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ABSTRACT

From the birth of multi–spectral imaging techniques, there has
been a tendency to consider and process this new type of data as
a set of parallel gray–scale images, (instead of an ensemble of an
n–D realization). Although, even now, some researchers make the
same assumption, it is proved that using vector geometries leads to
more realistic results. In this paper, based on the proposed method
for extracting the eigenimages of a color image, a new color image
compression method is proposed and analyzed which performs in
the vectorial domain. Experimental results show that the proposed
compression method is highly ef£cient.
Keywords: Principle Component Analysis, Color Image Process-
ing, Image Compression, Eigenimages.

1. INTRODUCTION

Color is one of the most important tools for object discrimination
by human observers, but it is overlooked in the past [16]. Dis-
carding the intrinsic characteristics of color images (as vector ge-
ometries) some researchers have assumed color images as parallel
gray–scale images (e.g., see [7]). It has been proved that the princi-
ple component analysis (PCA) is an appropriate vectorial descrip-
tor for natural color images [8].

In this paper, we apply a tree decomposition using a novel
color homogeneity criteria to cut a given image into homogenous
patches. Some mathematical tools are developed to introduce the
proposed eigenimage extraction method and then the performance
of the proposed method is analyzed. The main contribution of this
paper is a new color image compression method using the pro-
posed eigenimage extraction method. Sets of experiments are in-
cluded to perform a performance analysis.

Quad–tree decomposition is the well–known method for split-
ting an image into homogenous sub-blocks, resulting in a very
coarse but fast segmentation [18]. To use the quad–tree decom-
position a suitable homogeneity criteria is needed. In [2], the au-
thors proposed to use the error made by neglecting the two least
important principal components (the second and the third) as a
likelihood measure, called the linear partial reconstruction error
(LPRE). The LPRE distance of vector ~c to cluster r is de£ned as
τr(~c) = ‖~vT (~c − ~η)~v − (~c − ~η)‖, where ~v denotes the direc-
tion of the £rst principal component and ‖~x‖ is the normalized

L1 norm ‖~x‖ =
∑N
i=1 |xi|/N . In [2], the authors proposed to

use the following stochastic margin to compute the homogeneity
of the selected region r, ‖f‖r,p = arge{P~x∈r{f(~x) ≤ e} ≥ p},
where p is the inclusion percentage and P~x∈r{f(~x) ≤ e} denotes
the probability of x being less than or equal to e. It is proved that
‖τr‖r,p is a proper homogeneity criteria for the quad–tree decom-
position [3]. The comparison of the LPRE–based homogeneity
criteria with the Euclidean and Mahalanobis measures has proved
its superiority [3].

The early approach towards color image compression is based
on decorrelating the color planes using some linear or nonlinear
invertible coordinate transformation (e.g., Y CbCr [1], Y IQ [4],
and Y UV [20]), and then performing one of the standard gray–
scale compression methods (like the differential pulse code modu-
lation(DPCM) [15] or transform coding [17]) on each plane, sep-
arately (see also [11]). This approach is inef£cient, because none
of the available color spaces are able to completely decorrelate the
planes in a real image. In [9] using the PCA approach in the neigh-
borhood pixels, the author discusses the idea of separating the spa-
tial and spectral compression stages. As the paper proves, the max-
imum theoretical compression ratio for an ideal spectral compres-
sion method is 1 : 3. The main shortcoming of the method in [9] is
neglecting the fact that in non–homogenous regions the PCA does
not perform energy compaction [6]. In [6], the author combines the
spatial and the spectral information to reach a higher compression
ratio. Although, the method is based on expensive computation,
the peak signal to noise ratio (PSNR) results are desperate. The
main shortcoming of the method in [6] is the block–wise artifacts
produced after decompression.

In [13], the authors proposed an ef£cient (spatial) compres-
sion algorithm for gray–level images using the wavelet packets
and the pyramid lattice vector quantization. Here, we propose a
novel method for extracting three eigenimages from a single color
image. Also, we propose a method to produce the original image
out of the eigenimages. Using the spatial compression method in-
troduced in [13], each eigenimage is then compressed. Our main
contribution to the method in [13] is adding the spectral compres-
sion aspect to the method and thus increase the compression ratio.
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Figure 1: (a) Flowchart of the proposed color image compression method. (b) Flowchart of the proposed color image decompression
method.

2. PROPOSED ALGORITHMS

2.1. Basis Vector Polarization

Consider the spaceRn and a set of n basis vectors~vi, i = 1, · · · , n.
Storing this set of vectors needs n2 units of memory (when ne-
glecting the redundancy among data). Having in mind that a set
of basis vectors are an orthonormal set, the actual needed mem-
ory can be reduced. In fact, a set of basis vectors of Rn is a
member of Rn

2

, with n constraints of normality (‖~vi‖ = 1, i =
1, · · · , n) and n(n−1)

2
constraints of orthogonality (~vi⊥~vj , i, j =

1, · · · , n, i 6= j). Thus, the above–mentioned set of basis vectors
is an unconstrained member of an m–D space, with m equal to
n2 − n − n(n − 1)/2 or n(n − 1)/2. Thus, storing a set of the
basis vectors of Rn in n(n−1)

2
memory cells contains zero redun-

dancy. To make this representation unique, it is crucial to make

the set of the basis vectors right–rotating (RR). In 2–D spaces,
RR means (~v1 × ~v2) · ~j > 0 where, × and · denote the outer
and the inner products, respectively. In 3–D spaces, RR means
(~v1 × ~v2) · ~v3 > 0. Setting n = 2 leads to m = 1, which means
that any set of RR basis vectors in the xy plane can be speci£ed
uniquely by a single parameter (the angle). Similarly, the case of
n = 3 results inm = 3, which is used in this paper. We will prove
that the parameters in the 3–D case are angular too. Thus, we call
this method of representing a set of basis vectors, the polarization
method. Here we propose a method for £nding these angles.

Consider the three RR vectors ~v1, ~v2, ~v3 in R3. We de£ne the
angles θ, φ, and ψ as a manipulated version of the well–known set
of the Euler angles. Using ~vp as the projection of ~v on plane p
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Figure 2: (a) Original image adopted from [19], (b) result of the bi–tree decomposition method, (c) Emap, and (d) Rmap.
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Figure 3: Eigenimages of the image shown in Figure 2–(a), (a)pc1, (b)pc2, (c)pc3, (d) Corresponding Histograms.

(e.g., ~vxy1 ), the three angles are de£ned as:










θ = ∠(~vxy1 , [1, 0]T )

φ = ∠((Rxyθ ~v1)
xz, [1, 0]T )

ψ = ∠((Rxzφ R
xy
θ ~v2)

yz, [1, 0]T )

, (1)

where, ∠(~v, ~u) denotes the angle between two vectors ~v, ~u ∈ R2,
computed as ∠(~v, ~u) = sgn((~v×~u)·~j) cos−1 ~v·~u/‖~v‖‖~u‖where
sgn(x) is the signum function. Also, Rpα is the 3× 3 matrix of α
radians rotated counter–clock–wise in the p plane. Composing the
3×3matrix V with ~vi as its i–th column, we getRyzψ R

xz
φ R

xy
θ V =

I . As (Rpα)
−1 = Rp

−α we have V = Rxy
−θR

xz
−φR

yz
−ψ . While (1)

computes the three angles θ, φ, and ψ out of the basis vectors
(polarization), the above equation reproduces the base from θ, φ,
and ψ angles (depolarization).

2.2. Block–wise Interpolation

Consider a partition of the NW × NH as a set of rectangular re-
gions {ri|i = 1, · · · , n}, with corresponding (given) values of
{λi|i = 1, · · · , n}, satisfying ∀i, ∀~c ∈ ri, f(~c) ' λi for an arbi-
trary function f : R2 → R. The problem is to £nd f̃ as a good
approximation of f . We address this problem as a block–wise in-
terpolation of the set {(ri;λi)|i = 1, · · · , n}. Note that in the
case that the partition is a conventional rectangular grid, the prob-
lem reduces to an ordinary 2–D interpolation task. Here, we use
a reformulated version of the well–known low–pass Butterworth
£lter as the interpolation kernel,

Bτ,N (x) =

(

1 +

(

x

τ

)2N
)

−
1

2

, (2)

N = rnd

(

log a

b

(

β
√
1− α2

α
√

1− β2

)

)

, (3)

τ = a 2N

√

α2

1− α2
. (4)

The function Bτ,N (·) satis£es the conditions of Bτ,N (a) = α
and Bτ,N (b) = β. The 2–D version of this function is de£ned
as Bτ,N,w,h(x, y) = Bwτ,N (x)Bhτ,N (y) where w and h control
the spread of the function in the x and y directions, respectively.
Assuming that the region ri is centered on (xi, yi) while its height
and width are wi and hi, respectively, we propose the function f̃
to be de£ned as:

f̃(x, y) =

∑N
i=1 λiBτ,N,wi

2
,

hi
2

(x− xi, y − yi)
∑N
i=1Bτ,N,wi

2
,

hi
2

(x− xi, y − yi)
. (5)

Note that f̃(x, y), is a smooth version of the initial step case func-
tion ∀[x, y]T ∈ ri : f◦(x, y) = λi. Also, by setting proper values
of the parameters a, b, α, and β, the function f̃(x, y) will sat-
isfy the constraints. The proper set of the parameters must force
B
wi/2,hi/2
τ,N (x− xi, y− yi) to become nearly one in entire ri (ex-

cept for the borders neighborhoods) and also to prevent ri to in-
trude the interior with points of rj , for i 6= j. Selecting a value
near unity but smaller than it for a and α, limits the decline of the
ceil of the function, while setting b = 1 and a not too big value
for β (e.g., 0.4) controls the effects of neighbor regions on each
other. Note that setting a = 1−, α = 1, b = 1+, and β = 0, is the
marginal choice leading to no smoothing (the same as f◦).



As the generalization of the block–wise interpolation problem,
assume the set of regions {(ri;λij)|i = 1, · · · , n, j = 1, · · · ,m},
satisfying λij = argλ

(

∀~c ∈ ri, fj(~c) ' λ
)

for a set of arbitrary
functions fi : R2 → R, i = 1, · · · ,m. In a similar manner with
(5), we propose:

f̃j(x, y) =

∑n
i=1 λijBτ,N,wi

2
,

hi
2

(x− xi, y − yi)
∑n
i=1Bτ,N,wi

2
,

hi
2

(x− xi, y − yi)
. (6)

Here, because the set of the base regions for all f̃j are the same, the

total performance is increased by computing B
wi
2
,

hi
2

τ,N (x−xi, y−
yi) for each value of i, just once. Then, the problem reduces to m
times computation of a weighted average.

When working in the polar coordinates, because of the 2π dis-
continuity, ordinary algebraic operations on the variables lead to
spurious results (for example o+2π

2
= π, while the average of

0 radians and 2π radians equals 0 ≡ 2π radians). To overcome
this problem, we propose a new method: for the given problem,
{(ri; θi)|i = 1, · · · , n}, solve the problem {(ri; cos θi, sin θi)|i =
1, · · · , n} and then £nd θi using ordinary trigonometric methods.
Note that interpolating both sin θi and cos θi is performed to avoid
ambiguity in the polar plane.

2.3. The Eigenimage

Consider the PCA matrix, Vr , and the expectation vector, ~ηr , cor-
responding to the homogenous cluster r. Then, for the color vector
~c belonging to r we get the PCA coordinates as~cT = V −1

r (~c−~ηr).
Assume that we can somehow £nd the color cluster r~c for each
color vector ~c, where r~c describes the color mood of ~c, in the
sense that ~cT = V −1

r~c
(~c − ~ηr~c) satis£es σc′

1
À σc′

2
À σc′

3
,

where ~cT = [c′1, c
′

2, c
′

3]
T . We denote the 2–D arrays made by

c′1, c′2, and c′3 as the pc1, pc2, and pc3, respectively. The original
image can be perfectly reconstructed using these three channels,
except for the numerical errors as ~c ' ~c3 = Vr~c~c

T + ~ηr~c . It is
proved in [2] that for homogenous swatches, neglecting pc3 (or
even both pc2 and pc3), gives good approximations of the original
image. Here, we generalize the approach. Note that the perfect
reconstruction of the image from all eigenimages does not rely on
the energy compaction, while the partial reconstructions de£ned as
~c2 = Vr~c [c

′

1, c
′

2, 0]
T + ~ηr~c and ~c1 = Vr~c [c

′

1, 0, 0]
T + ~ηr~c do rely

on it. Although, the above scheme gives a 1–D representation of a
given color image, if the computation of Vr~c and ~ηr~c gets expen-
sive the scheme although being theoretically promising it actually
is not applicable. Thus, we seek for a method for describing Vr~c
and ~ηr~c in a simple way. The case for de£ning r~c = N~c (the neigh-
borhood pixels) is automatically rejected (because to compute Vr~c
and ~ηr~c we need all the neighborhood points of ~c leading to a high
redundancy and computation cost).

Here, we propose a fast and reliable method to compute the
corresponding Vr~c and ~ηr~c for all image pixels. Assume feeding
the given image I to the bi–tree (or equivalently the quad–tree) de-
composition method. The output of the decomposition method is
the matrix Υ containing the coordinates of ri along with the ex-
pectation matrix ~ηi and the polarized version of the PCA matrix
(θi, φi, ψi). Storing this portion of the Υ matrix needs 10n bytes.
For ordinary values of n ' 200 in a 512 × 512 image, Υ will
take about 1

400
of the original image data. Now, assume solving

the problem {(ri; ξi)|i = 1, · · · , n} using the block–wise inter-
polation, where ξi is the row vector containing ηi1 , ηi2 , ηi3 , θi,

φi, and ψi. Note that the three values of θi, φi, and ψi are of
angular type. Assume the solutions of the problem as the func-
tions η̃1, η̃2, η̃3, θ̃, φ̃, and ψ̃. Now we compute the functions
~̃η : R2 → R3 and Ṽ : R2 → R9, as the value of the expectation
vector and the PCA matrix in each pixel, respectively. This leads
to the computation of the three eigenimages pc1, pc2 and pc3. We
call the function ~̃η : R2 → R3 as the expectation map (Emap)
and the polarized version of Ṽ : R2 → R9 as the rotation map
(Rmap), respectively. As the PCA theory states [12], we expect
the standard deviation of the three planes to be in descending or-
der. From linear algebra we know that for orthonormal matrices
Vr the eigenimages satisfy σ2

pc1 + σ
2
pc2 + σ

2
pc3 = σ2

r + σ
2
g + σ

2
b .

Thus, κi = σ2
pc1/(σ

2
pc1+σ

2
pc2+σ

2
pc3) shows the amount of infor-

mation available in the i–th eigenimage, satisfying κ1+κ2+κ3 =
κr + κg + κb = 1.

2.4. Color Image Compression

Consider the image I and its corresponding eigenimages pc1, pc2,
and pc3. Due to the energy compaction condition, this scheme is
actually an spectral image compression method. Reconstructing
the image using just one or two eigenimage(s) gives the compres-
sion ratios of 3 : 1 (the theoretical margin) and 3

2
: 1, respectively.

To add the spatial compression ability to the proposed method, we
use the PU–PLVQ gray–scale image compression technique [13]
for each eigenimage with different compression ratios (see Fig-
ure 1–a). As Figure 1–a shows, the transmitted information con-
tains the compressed versions of the pc1, pc2, and pc3, along with
the Υ, α, a, β, and b (for block–wise interpolation). Assume that
the image to be compressed is aH×W color image, decomposed
into n blocks. The total amount of information to be sent equals:
10n bytes for storing xi1, xi2, yi1, yi2, ηi1, ηi2, ηi3, θi, φi, and ψi
plus WH(λ−1

1 + λ−1
2 + λ−1

3 ) for storing pc1, pc2 and pc3 eigen-
images compressed with compression ratios of λ1, λ2, and λ3, re-
spectively (where λ1 > λ2 > λ3). Thus, the total compression ra-
tio equals λ ' 3(λ−1

1 +λ−1
2 +λ−1

3 + 10n
WH

)−1. A nominal value of
λ2 = λ1 and λ3 =∞ leads to λ ' 1.5λ1. Note that using a pure
spatial compression, all three channels must be compressed with
almost the same compression ratios, resulting in a total compres-
sion ratio of λ̃ = 3WH(WH/λ1+WH/λ1+WH/λ1)

−1 = λ1.
As shown in Figure 1–b, in the decompression process the Emap
and the Rmap are computed just like what performed in the en-
coding process. Using these information along with the decoded
versions of pc1, pc2, and pc3, the original image is reconstructed.

3. EXPERIMENTAL RESULTS

The proposed algorithms are developed in MATLAB 6.5, on an
1100 MHz Pentium III personal computer with 256MB of RAM.
The codes are available online at http://math.sharif.edu/∼ abad-
pour. A database of color images (140 samples) including the
standard images of Lena, Mandrill, Airplane, Peppers, Girl, and
Couple and also some professional color photographs [19] is used.
All images have the size of 512 × 512, in RGB color space, and
compressed using standard jpeg compression with compression ra-
tio of about 3 : 1.

3.1. The Eigenimage

Consider the image shown in Figure 2–(a). It is decomposed with
parameters of p = 0.5, ε1 = 5, and % = 5 into 91 blocks (see Fig-
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Figure 5: PSNR values of image reconstruction using. (a) Three eigenimages. (b) Two eigenimages. (c) One eigenimage for different
values of ε1 and %.

ure 2–(b)). Figures 2–(c) and 2–(d) show the corresponding EMap
and RMap. Figure 3 shows the three pci channels corresponding to
the image shown in £gure 2–(a). In all eigenimages the dynamic
range of the image is exaggerated to give a better visualization.
The stochastic distributions of pci are investigated in Figure 3–d.
It shows the histogram of the three produced planes for the image
shown in Figure 2–(a). In this example, the standard deviations
of the pci planes are computed as: σpc1 = 52, σpc2 = 12, and
σpc3 = 6. Note the perfect compaction of the energy in pc1.

Figure 4–(a), 4–(b), and 4–(c) show the values of κ1, κ2, and
κ3 for the image shown in Figure 2–(a) for different values of ε1
and %. Note that rather than the trivial cases of % ≤ 2 and ε1 > 9
(which are never used actually), more than 90% of the image en-
ergy is stored in pc1, while pc2 and pc3 hold about 9% and 1% of
the energy, respectively. Having in mind that in the original image
κr = 38%, κg = 32%, and κb = 30%, the energy compaction of
the eigenimages are considerable.

Figure 6 shows the results of reconstructing the image of Fig-
ure 6–(a) from the eigenimages. While Figure 6–(b) shows the re-
sult of reconstructing the image using all three eigenimages, Fig-
ures 6–(c) and 6–(d) show the results of ignoring pc3 and both
pc3 and pc2, respectively. The resulting PSNR values are 60dB,
38dB, and 31dB, respectively. Note that PSNR = 60dB (in-
stead of in£nity), for reconstructing the image using all eigenim-
ages is caused by the numerical errors, while the two other PSNR
values (38dB, 31dB) show some loss of information. ThePSNR

values of above 38dB are visually satisfactory even for profession-
als [14].

Figure 5 shows the PSNR values obtained by reconstructing
the image using all the three channels (Figure 5–(a)), only two
channels (Figure 5–(b)), and just one channel (Figure 5–(c)), for
different values of ε1 and %. Note that for values of ε1 ≤ 8 and
% ≥ 3, reconstructing the image using all eigenimages gives the
high PSNR value of about 60dB, while neglecting one and two
eigenimages results in PSNR ≥ 35dB and PSNR ≥ 28dB,
respectively.

3.2. Color Image Compression

Figure 7 shows the results of the proposed compression method.
Table 1 lists the compression ratio used for compressing the eigen-
images and the resulting compression ratio and PSNR values.
These results has been acquired while setting p = 1

2
, ε1 = 5,

and % = 5. Figure 8 shows the exaggerated difference between
the reconstructed images shown in Figure 7 and the original im-
ages. Here, the scheme is de£ned as x? = (x − [η − σ])/(2σ),
where η and σ denote the expectation and the standard deviation
of x, respectively. Note the high compression ratio of about 70 : 1
in all cases, while the PSNR is mostly above 25dB. Among
other region–based coding approaches the method by Carveic et.
al. is one of the best [5]. They mixed the color and texture infor-
mation into a single vector and performed the coding using a mas-
sively computationally expensive algorithm. The £nal results show



(a) (b) (c) (d)

Figure 6: Results of reconstructing an image from its eigenimages. (a) Original image adopted from [19]. (b) Using all eigenimages
(PSNR = 60dB). (c) ignoring one eigenimage (PSNR = 38dB). (c) ignoring two eigenimages (PSNR = 31dB).

PSNR values of about 20 : 1 for compression ratios of about
40dB. In [10], the researchers use the same separation scheme
between compression in the two disjoint domains of spectral and
spatial redundancy using a PCA neural network. They reached
the compression ratio of 3.7 : 1 with value of PSNR around
25dB, while almost all test samples are homogenous. In [21], the
method gives the compression ratio of about 14.5 : 1 but with the
same range of PSNR as ours. The only drawback of the proposed
compression method is some rectangular artifacts in ultra simple
images, as seen in Figure 7–(f). Our future plan is to overcome
this minority of problem.

(a) (b) (c) (d)

(e) (f) (g)

Figure 8: Exaggerated error of the proposed compression method.

4. CONCLUSIONS

The proposed eigenimage extraction method is proved to be highly
ef£cient in image energy compaction and partial reconstruction
of images, both quantitatively and subjectively. Then the perfor-
mance of the proposed color image compression method is an-
alyzed. Comparison of the results with the available literature
shows the superiority of the proposed color image compression
method.
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