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ABSTRACT

Conventional implementation of multi-dimensional wavelet 
transform (e.g. 3-D wavelet) requires whether a high amount of 
"in access" memory or a continual access to slow memory of a 
processor which makes it infeasible for most applications. In this 
paper, we proposed a novel algorithm for computation of an n-D 
discrete wavelet transform (DWT) based on lifting scheme. In 
addition to benefits of lifting scheme (which causes a major 
reduction in computational complexity and performs the total 
computations in time domain), our real-time approach computes 
the coefficients for all kinds of 1st and 2nd generation wavelets 
with short delay and optimized utilization of the slow and fast 
memories of a processor. 

1. INTRODUCTION 

Multi-dimensional discrete wavelet transform has been 
considered to be used in many fields such as image and video 
processing applications. In these applications one needs a fast 
and memory efficient algorithm to compute the transform. In 
traditional n-D DWT algorithms, the signal is first loaded on the 
memory and then transform coefficients are computed. This 
method is simple, but its main drawback is that the processor 
should have access to the whole signal simultaneously, and 
further none of the coefficients are ready before the end of the 
whole process.  

When implementing, one should consider the process time 
in addition to necessary memory size. The number of "reads 
from" and "writes on" the slow memory of a processor is one of 
the main parameters that affects the process time. If an algorithm 
is designed in such a way that while using a reasonable amount 
of the fast memory of a processor is able to have at most one 
read and write for each sample of the signal, the process speed 
will increase considerably.  

One of the schemes used to compute DWT is the lifting 
scheme. Suppose that P(z) is the polyphase matrix of analysis 
quadrature mirror filters (QMF) of a wavelet, which can be of 
any type; minimum phase (orthonormal) or linear phase 
(biorthogonal).  The lifting scheme expresses that P(z) can be 
decomposed into elementary matrices as: 
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and K is a nonzero constant [1]. This method is FFT free and in 

[6] has been shown that it reduces the computational complexity 
to nearly 1/2 and for long filters even to 1/4, relative to the 
standard algorithm.  

Figure 1. An example of lifting network for a lifting polyphase 
matrix decomposition. 

Figure 1 illustrates an example of a lifting network for a 
general parametric lifting polyphase matrix decomposition, as: 
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Note that based on lifting theory the decomposition structure can 
be symetric/asymetric for both orthonormal and biorthogonal 
filters. In this figure each edge between two nodes (at two 
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consequent steps) and the corresponding weights indicates that 
the node in the lower step should be multiplied to the weight and 
be added to the amount of the node in the higher step. It is worth 
noting that every parallel edge between two specific steps has 
the same weight. Also, all horizontal edges have the weight of 
one except for those that are ended to wavelet coefficients. In 
this figure lis and his indicate the low frequency and high 
frequency wavelet coefficients, respectively. 

A method for implementing lifting scheme is to compute 
each step thoroughly for every sample and then move to the next 
step [7]. This method has two main drawbacks:  

I)  either all of the signal should be available in a fast 
memory or each sample of signal should be read from and 
written on a slow memory at least as many times as the 
number of steps in lifting, and  

II)  the procedure even takes the first transformation 
coefficient only when it has the whole signal data, and 
therefore this implementation can not be used in real-
time.

In this paper we suggest an implementation algorithm of lifting 
scheme that overcomes these drawbacks. 

2. THE PROPOSED ALGORITHM 

It is more proper to first analyze the algorithm for one level of 1-
D DWT, and then generalize it to a multilevel and multi-
dimensional case.  

To overcome the drawbacks explained in the previous 
section, here we propose an algorithm such that as each sample 
enters the fast memory (a constant length buffer), all possible 
computations on samples in buffer (in different steps) will be 
performed, through which a wavelet coefficient is computed. 
Then the procedure outputs the prepared coefficient and inputs 
the next sample to the buffer. It is worth mentioning that the 
length of the used buffer is in the order of the wavelet QMFs 
half-length. 

As can be seen in figure 1, all nodes in the ith row are 
intermediate values of a unique variable i. We say a node n(s,i)
is active, if  the computation of the variable i is in step s,
therefore it should be in the buffer in fast memory of processor. 
By inspection, one can find that the nodes in step s+1 which are 
connected to node n(s,i), can be updated from it only when the 
computation of  n(s,i) has been finalized (i.e., n(s,i) is complete).
When these nodes have received all of the information from 
n(s,i) (i.e., n(s,i) is free), computation of variable i can be 
transferred to node n(s+2,i) (i.e., n(s+2,i) is activated instead of 
n(s,i)). These principles can be realized by two sub-procedures: 

I. If node n(s,i) is complete, active nodes connected  to it  
in step s+1 can update their  values from n(s,i).

II.  If n(s,i) is free, activate n(s+2,i). So it can update itself 
from complete nodes of step s+1, which are connected to 
it.

Regarding the method of polyphase matrix decomposition, 
in lifting network (as can be seen in figure 1) in step 1 even 
numbered nodes can always be updated from odd numbered 
nodes. As a result, we can execute the first sub-procedure if an 
odd sample enters, and the second sub-procedure if an even 
sample inputs. Besides, when entering a new sample, each step 
of the lifting network needs to call at most one of these sub-
procedures for nodes available in the buffer. So the order of 
calling these sub-procedures could be such that: 

- by entering an odd sample, the sub-procedure I will be 
executed at most once for each step on active nodes (the 
oddupdate procedure), and  

- by entering an even sample the sub-procedure II will be 
run for each step, if necessary (the evenupdate procedure).  

Figures 2-a and 2-b illustrate the progress of the 
computation in lifting network of figure 1 after the execution of 
evenupdate and oddupdate procedures, respectively. The bolded 
edges in each figure are computed during the last procedure 
execution. In these figures Bis are the elements of the 8-length 
buffer so the corresponding nodes are active nodes in buffer, and 
the omitted edges have not been computed yet. In these 
procedures, first one sample of signal is entered and then after 
the completion of the procedure, one wavelet coefficient is 
computed. 

(a) 

(b)

Figure 2.  Figures a and b show the progress of computation in 
lifting network of figure 1, after the execution of evenupdate and 
oddupdate procedures,respectively. 
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As stated above, this algorithm needs a buffer with a length 
of NB, that is nearly as long as the half-length of QMFs. To 
extend the algorithm to multi-levels, when a low frequency 
coefficient of one level is ready (one li), it immediately enters to 
the next level as a new sample. Figure 3 shows the 2-level 
wavelet computation of figure 1. Thus for the J-level case, the 
size needed for fast memory will be just NBJ.

In order to employ the advantages of our algorithm for 
multi-dimensional signals such as video, it is proper to use its 
structure only for the longest dimension (e.g., the time 
dimension for video) and use the conventional implementation 
of lifting for other dimensions. In this case, we need a memory 
of size JNBNI where NI is the amount of memory needed for one 
sample of the signal in the mentioned dimension (e.g., an image 
for video). It is obvious that using this amount of memory is 
completely feasible for video signals with normal resolutions. 

3. PERFORMANCE COMPARISON 

There are only few researches done on n-D wavelets with 
memory restriction considerations. Some of them have not 
considered a true n-D wavelet transform. For instance they study 
it on signals decomposed to groups of pictures (GOP), groups of 
frames (GOF), or even perform independent transforms on 
different dimensions (e.g., they implement a 3-D wavelet 
transform by performing a 2-D wavelet on each frame and an 
unrelated shorter 1-D wavelet on the temporal direction) [2, 4]. 
Another class like [3] makes use of  parallel implementations on 
parallel processors to speed up the process. 

Reichel in [6] suggested a method of 2-D wavelet to reduce 
memory requirements. In his work he needs a 40-length buffer 
for the 9-7 Daubechies wavelet (the only example stated in his 
algorithm). It is worth mentioning that with the same filter our 
algorithm requires only a 5-length buffer. Also, his algorithm 
needs multi reads and writes per pixel while ours needs only one. 

In [5] a memory-constrained routine for just the 3-D 9-7 
Daubechies wavelet transform is introduced. In fact this routine 
can be viewed as a special case of our method while our 
algorithm is also capable of dealing with all kinds of mother 
wavelets.  

Also in [8] Jiang and Ortega proposed a line-based system 
in which they use GOP scheme (as appose to our algorithm) 
followed by a boundary postprocessing approach. In addition, 
compared to our algorithm, they need more total memory 
requirements in computational process, for both parallel and 
sequential schemes. Therefore to the best knowledge of the 
authors, the novelty of the proposed algorithm is that it 
simultaneously satisfies the following interesting properties: 

1. Is based on lifting scheme, and therefore: 
a. is approximately 2 to 4 times faster than standard 

DWT algorithm for sufficient long filters (as can be 
seen in table 1), 

b. is an FFT free scheme and performs in time domain, 
c. can be used for all types of wavelet filters, containing 

1st and 2nd generations, 
d. computes wavelet coefficients in-place, and 
e. has capability of implementing in parallel. 

2. Requires few fast memories independent from signal 
length. It needs only JNBNI byte of fast memory for a J-
level wavelet transform, where NB is the buffer length and 
NI is the memory requirement for each frame of the signal. 

Table 1 shows the NB for some wavelet filters. It can be 
seen that NB is approximately as long as half-length of the 
filter.

3. Needs only one read and write per each sample of a signal 
from the slow memory of processor. 

4. Uses the locality property of wavelet, therefore for 
computing a wavelet coefficient it needs only necessary 
samples of signal, and thus can be implemented in real-
time.

Table 1 shows the performance of the proposed algorithm 
for a number of orthonormal and biorthogonal wavelets. 
Columns of this table show the wavelet type, the wavelet name, 
length of the QMFs, length of the buffer required in the fast 
memory (NB), and the computational complexity rate relative to 
the standard algorithm (R), respectively.  As can be seen in this 
table, the computational complexity of the proposed algorithm 
for sufficiently long filters is about 1/2 and even in some cases 
near 1/4 of the standard algorithm. We have also proposed a 
wavelet that offers R of 0.292 (longer filter can be designed to 
offer R of less than this amount up to 0.25). Also, as shown in 
this table, NB is approximately as long as half-length of the 
QMFs (for sufficiently long filters). 

Table 1. Performance of the proposed algorithm for a number of 
orthonormal and biorthogonal wavelets. [NB: length of buffer 
required in fast memory, R: rate of computational complexity 
relative to the standard algorithm].  

 Wavelet Type Wavelet Name Filters Length NB R

Biortogonal 
Daubechies 
CDF(2, 8) 
Proposed 

7-9 
3-17 

75-75 

5
9

38

0.6
0.579
0.292

Orthonormal 
Coiflet (1) 
Daubechies 

Vaidyanathan 

6
20
24

5
11
13

0.636
0.447
0.53

4. CONCLUSION 

In this paper we have explained a novel real-time algorithm for 
implementing n-D wavelet transform. The algorithm is based on 
lifting scheme and therefore is faster than standard algorithm. It 
uses the fast and slow memory of a processor efficiently, which 
makes it memory efficient and fast. We have also given a 
performance comparison among other available algorithms and 
have shown that the proposed algorithm is the only feasible and 
general algorithm capable of implementing all types of n-D 
wavelets (especially in 3-D). 
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Figure 3. 2-level wavelet computation of figure 1 (in this example the size needed for fast memory is only 2*8=16 unit). 
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