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Abstract - The performance of most image denoising systems 
depends on some parameters which should be set carefully based 
on noise distribution and its variance. As in some applications 
noise characteristics are unknown, in this research, a criterion 
which its minimization leads to the best parameter set up is 
introduced. The proposed criterion is evaluated for the wavelet 
shrinkage image denoising algorithm using the cross validation 
procedure. The criterion is tested for some different values of 
thresholds, and the output leading to the minimum criterion value 
is selected as the final denoised output. The resulting outputs of our 
method and the previous threshold selection scheme for the wavelet 
shrinkage, i.e. the median absolute difference (MAD), are 
compared. The objective and subjective test results show the 
improved efficiency of the proposed denoising algorithm. 
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1. INTRODUCTION 

 
Nowadays, by improving image acquisition systems, 

many types of cameras are available. Some of these cameras 
use very simple hardware in order to have low cost and to be 
embedded in other devices like mobile phones. Hence, the 
output images of these devices are noisy and poor. In 
addition, in most image processing systems, the taken image 
should be fed to some processing stages like compression 
and recognition. The parasitic noise in the input image could 
suffer the other processes and make them inefficient.  

To overcome these shortcomings, many image denoising 
algorithms have been developed during recent years. For 
instance, Gaussian smoothing, neighborhood filtering, and 
wavelet shrinkage can be mentioned [1].  

In general, all denoising methods have some parameters 
and thresholds which should be adjusted to gain the best 
performance. Generally, these parameters depend on the 
noise distribution and its variance. Most algorithms suppose 
the noise to have a white Gaussian distribution with a known 
variance. However, in practical situations, we have no 
information about the noise variance. Hence, another 
problem rises which is the parameter and threshold selection 
algorithm. During recent years, some researchers considered 
this problem and made some solutions [2, 3, and 4]. The 
generalized cross validation method is proposed by Jansen 

et al. for multiple wavelet threshold selection [2, 3]. They 
defined a criterion which its minimum roughly minimizes 
the mean square error (MSE), but their method works in 
some special conditions and as proved in [2], it works only 
for wavelet shrinkage with orthogonal transforms. In 
addition, as they mentioned in their paper, its output has low 
MSE, but it is not guaranteed to yield a good visual quality. 

In this paper, assuming the additive noise to have an 
arbitrary distribution, a novel criterion for image denoising 
is introduced. The minimization of this criterion leads to 
near optimum parameter set for denoising purposes. In order 
to evaluate the performance of this criterion, it is applied for 
optimum parameter selection in a popular image denoising 
algorithm, the wavelet thresholding. 

The layout of this paper is as follows: Section 2 
introduces the proposed criterion and its efficiency in 
parameter selection. In section 3, wavelet shrinkage 
algorithm is described briefly. The experimental results and 
the performance comparison are presented in Section 4. 
Finally, Section 5 concludes the paper. 

 
2. PROPOSED CRITERION FOR PARAMETER 

SELECTION 
 
In image denoising algorithms with additive noise, the 

input image is assumed to be the summation of original 
image and an additive random noise. An important 
knowledge which is used in the proposed criterion is the 
independency of these two signals (the original image and 
the additive noise). Here, the aim of denoising algorithms is 
to remove the parasitic noise. In fact, the difference between 
the input and the output of the denoising stage is the 
estimated noise which has been removed (see Figure 1). 
Therefore, the distribution of the estimated noise should 
approach that of the additive noise. 

The estimated noise for image denoising with two 
distinct parameter sets is shown in Figure 2. In this figure, 
the estimated noise is exaggerated to be shown clearly. It 
could be seen that there is a large similarity between the 
estimated noise and the original image, but this similarity in 
Figure 2(f) is less than that in Figure 2(e). It means that for 
an optimum image denoising algorithm, the correlation 
between the estimated noise and the output image which is 

 



an expectation of the original image should be minimized. 
This result is in agreement with the assumption of 
independency between the original image and the additive 
noise. Now, the correlation for each parameter set can be 
computed. Consequently, by minimizing that, the best 
parameter set for the denoising algorithm can be found. 

 

 
Fig. 1. Noise estimation 

 
 
 

 
 

Fig. 2. Form left to right and top to bottom: (a) Original image(Lena), (b) noisy image (AWGN, sigma=15), (c) blurred denoised image, (d) denoised 
image using proper parameters, (e) estimated noise of (c), (f) estimated noise of (d). (The estimated noise is exaggerated to be seen clearly). 

 
According to our knowledge, most denoising 

algorithms assume the original image to have more energy 
in lower frequency components compared to the noise. In 
addition, the additive noise usually has near flat spectrum 
(i.e. white noise). Hence, a huge energy of noise can be 
removed by removing the higher frequency components. 
But, we know that using these methods, the edge points 
which have higher frequency components will be blurred. 
As we know, because the human visualize system is more 
sensitive to the edges, the blurring effect will be perceived 
obviously. In this research, in order to adapt to the human 
visualize system, the criterion is altered. As can be seen in 
Figure 2, the edge points can be found in the estimated 

noise. Therefore, the correlation between the estimated 
noise and the edge map of the output image is used. 
Because the output image for some parameter sets has 
high amount of noise, the edge map should be extracted 
using a robust edge detection method; thus, here, Canny 
edge detector is used [5]. Then, the following value should 
be minimized. 

 
( , )C Correlation Estimated noise output image edge=
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With weak denoising parameters, the estimated noise 
approaches to a zero field and makes the correlation to 
have a low value. Consequently, the minimum correlation 
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will be found for the weak denoising parameters. In order 
to suppress this defect, the estimated noise energy is used 
in the proposed criterion. The final criterion can be written 
as follows: 
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The minimum of this criterion is found for the 
optimum parameters set. Some optimization methods like 
the genetic algorithms can be used to achieve the 
minimum, yet in this paper, showing the performance of 
the proposed criterion is the final goal; consequently, 
finding the minimum is performed using a simple method, 
i.e. cross validation. This criterion is computed for some 
parameter sets which are predefined multiplications of the 
parameter set of the MAD method, described in the next 
section, and the minimum value is chosen. 

 
3. WAVELET SHRINKAGE 

 
As the defined criterion should be evaluated and 

compared with the other parameter selection methods, in 
this research, a usual image denoising algorithm, i.e. the 
wavelet shrinkage is implemented. In this section, a brief 
description of this method is presented. The 
implementation results and details are discussed in Section 
4. 

Wavelet shrinkage is an efficient signal denoising 
algorithm introduced by Donoho et al. in [1, 6, and 7]. 
That method is based on the idea that the original image 
has large wavelet coefficients and the noise is distributed 
over all coefficients. Thus, by thresholding the small 
coefficients, the image will not be damaged although a 
large amount of noise energy will be removed. The hard 
thresholding is applied using: 







>

≤
=

Txx

Tx0
HWT(x)  

 
(3) 

where T is a predetermined threshold value. This basic 
idea causes some oscillations near the edges. As a result, 
they proposed soft thresholding method in which small 
wavelet coefficients are cancelled and the others are 
changed in order not to destroy the continuity in wavelet 
coefficients.  
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where Sign(x) denotes the signum function. Using this 

method, oscillations are suppressed [7]. 
In wavelet thresholding methods, the selection of 

thresholds for each resolution level is very important 
because according to the other denoising algorithms, 
wrong selection can make the output image blurred or 

noisy. Some threshold selection methods are introduced 
for Gaussian noise distributions with known variances. 
Three commonly used methods are the universal, SURE, 
and MiniMax. The mathematical details can be found in 
[6, 7]. For instance, universal method is as follows: 
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where N is the number of data points and nσ
∧

is the 
noise variance defined below. In most denoising 
algorithms, the median of absolute difference (MAD) is 
used for noise variance estimation [8].  
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This estimation yields to good results for Gaussian 

distributed noise. A typical wavelet shrinkage algorithm is 
shown in Figure 3. 
 

 
Fig. 3. Block diagram of a simple wavelet shrinkage denoising system. 

 
4. EXPERIMENTAL RESULTS 

 
In this section, the implementation results and the 

performance of the proposed algorithm when compared to 
other available approaches are presented. An efficient 
criterion is computed for several parameter sets in a 
denoising algorithm and the parameters leading to the 
minimum of the criterion are chosen as the best 
parameters for the input image and the related noise 
statistics. The proposed algorithm is implemented using 
Matlab package for wavelet shrinkage image denoising 
process.  

As briefly discussed in Section 3, wavelet shrinkage is 
a powerful image denoising algorithm, and thus many 
researchers have proposed different modified versions of 
that algorithm. In this research, wavelet shrinkage is 
implemented in two resolution levels. Here, Daubechies 
wavelet with 6 tabs is used. The initial threshold for each 
subspace is chosen independently based on the MAD 
variance estimation and MiniMax threshold selection 
methods. Next, the criterion is computed for 11 different 
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multiplications of this initial threshold set. The 
multiplications are chosen uniformly in the logarithmic 
scale in the range of 8.010− to 2.110 . Finally, the minimum 
is taken as the best solution. The MSE of this method and 
the MAD method for some standard images are listed in 
Table 1. The last column contains the best MSE among 11 
tested threshold sets. As can be seen, the obtained 
denoising system (with selected variance) approaches the 
minimum MSE. The resulting PSNR and the calculated 
criterion for a sample image are plotted in Figure 4. As 
seen in this figure, choosing the minimum value of the 
proposed criterion matches the maximum PSNR that leads 
to the best parameter selection for denoising purposes. A 
sample output result is shown in Figure 5. 

As seen in Table 1, for most tested images the MSE 
obtained from the proposed algorithm is less than that of 
the MAD method. Moreover, for some cases the obtained 
MSE by our algorithm is close to the minimum available 
MSE.  

As the MSE is not the best measurement for 
performance analysis in image processing systems, the 
outputs should be examined in a subjective test as well. 
The results of the subjective test among 20 boys and girls 
are presented in Table 2. Some particular cases in which 
the MSEs of our method are high are examined in this 
test. For instance, in the 21st row of Table 1, the resulting 
MSE is higher than that of the MAD method. The outputs 
of the 21st case are shown in Figure 6. It is obvious that 
the output of our method is subjectively better than the 
MAD output, which proves that both objective and 
subjective tests should be run. In fact, because the 
criterion uses the edge map, our algorithm leads to less 
defects in the edge areas and thus results in higher 
subjective performance; although it may have a higher 
MSE. Another result obtained from these implementations 
is that for lower input noise variances, our method 
performs much better than the MAD method. Because for 
images with a low level of noise, after denoising the edge 
map can be extracted more efficiently, and thus the 
proposed algorithm can better calculate the minimum that 
matches the maximum of the PSNR. As another result, for 
images with small size (about 256x256), our method 
performs better than the MAD and MiniMax methods, 
because our method is less directly dependent to the 
statistics of the images. This fact motivated us to examine 
this method in spatially adaptive wavelet shrinkage 
algorithms introduced in [9]. 

 
5. CONCLUSION 

 
In this paper, an efficient criterion for performance 

analysis of denoising systems is introduced. It is shown 
that using a cross validation procedure, we can adjust the 
system parameters to achieve a better performance. This 
criterion is examined for wavelet shrinkage as a common 

denoising algorithm. According to the results, the obtained 
subjective tests show the superiority of the proposed 
algorithm when compared to the MAD approach. Another 
important advantage of this method is its independency on 
the noise distribution and its variance. As mentioned 
above, the algorithm performs even better for images with 
lower noise variances. 

 
Table 1. MSE of our method in comparison with MAD and minimum 

available MSE. 
 Image 

name 
Noise 

standard 
deviation 

MSE of 
proposed 
method 

MSE of 
MAD 

method 

Min 
available 

MSE 
1 Barbara512 5 18.79 112.18 18.79 
2 Barbara512 10 56.22 173.19 56.22 
3 Barbara512 15 100.89 222.49 100.89 
4 Barbara512 20 201.52 260.27 152.77 
5 Barbara512 25 228.89 292.18 197.45 
6 Barbara256 5 22.66 162.87 22.66 
7 Barbara256 10 70.74 237.11 65.52 
8 Barbara256 15 131.45 294.70 121.27 
9 Barbara256 20 190.61 345.20 190.61 

10 Lena512 5 12.84 35.57 12.84 
11 Lena512 10 32.87 55.13 32.87 
12 Lena512 15 58.44 73.91 55.79 
13 Lena512 20 84.00 92.65 78.10 
14 Lena512 25 98.74 110.67 98.74 
15 Lena256 5 17.35 79.24 17.35 
16 Lena256 15 95.65 153.05 88.24 
17 Boat 5 18.45 80.26 18.45 
18 Boat 10 54.47 107.66 48.90 
19 Boat 15 113.38 133.26 82.43 
20 Boat 15 81.59 133.68 81.59 
21 Boat 20 192.18 157.22 114.07 
22 Peppers 5 15.18 38.55 15.18 
23 Peppers 10 49.97 55.90 35.56 

 Average 13.04 84.65 148.13  74.19 
 

Table 2. Subjective test results among 20 boys and girls (score 5 is 
assigned to the original image). 

No. Image 
name 

Noise 
standard 
deviation 

Proposed 
method 

MAD 
method 

1 Barbara512 25 3.30 2.62 
2 Barbara256 20 3.47 2.44 
3 Lena256 15 3.49 2.99 
4 Boat 15 4.12 3.19 
 Average 18.75 3.59 2.81 
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                                                            (a)                                                                                  (b) 

Fig. 4. Results for Lena256 (with Gaussian noise, standard deviation=15) (a) PSNR vs. threshold ratio, (b) proposed criterion vs. threshold ratio. 
(Threshold is the multiplication of the threshold ratio and the MAD threshold, i.e. setting threshold ratio equal to one leads to the MAD method). 

 

 
 

Fig. 5. From left to right and top to bottom: (a) Original image (Barbara256), (b) noisy image (Gaussian, standard deviation=15), (c) MAD output 
(MSE=295), (d) output of our method (MSE=131). 

 



 
 

Fig. 6. From left to right and top to bottom: (a) Original image (fishing boat), (b) noisy image (AWGN, standard deviation=20), (c) MAD output 
(MSE=157), (d) output of our method (MSE=192).
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