

A Novel Fuzzy Classifier Using Fuzzy LVQ to
Recognize Online Persian Handwriting

 M. Soleymani Baghshah S. Bagheri Shouraki S. Kasaei
 Department of Computer Engineering, Sharif University of Technology, Tehran, Iran

 soleyman@ce.sharif.edu sbagheri@ce.sharif.edu skasaei@sharif.edu

Abstract

Fuzzy logic is a powerful tool to represent imprecise
and irregular patterns. This paper presents a novel
fuzzy approach for recognizing online Persian (Farsi)
handwriting. In this approach, a fuzzy classifier is
introduced that uses a combination of the fuzzy LVQ
learning model and the expert knowledge. This method
applies an FLVQ network to distinguish between the
similar tokens that appear at the end of the strokes. For
other tokens, fuzzy linguistic terms are used to describe
their features. The purposed method was run on a
database of Persian isolated handwritten characters
and achieved a high recognition rate compared to other
available approaches.

Keywords: Persian Handwriting, Fuzzy Rule-Based,
FLVQ, Recognition.

1. Introduction

The Persian character set (along with similar

character sets) are used by more than 30% of the
world's population and serve in the writing of many
widespread languages such as Arabic and Aurdo [1]. In
contrast to the advances in the online Latin and Chinese
handwriting recognition, relatively few studies have
been devoted to the Persian handwriting recognition.
This is due, in part, to the cursive nature of the task.

In the last two decades a number of online
handwriting recognition systems have been developed.
Most of them employ stochastic methods (like hidden
Markov models), connective learning-based methods
(like neural networks), model matching, and
structural/syntactical techniques. The major drawback
of all previous methods is their high-dependability on
small writing perturbations that tends to imprecise
recognition results when working with very vast variety
of writing styles.

Considering the limitation and drawbacks of the

existing approaches, we define two major
characteristics that a handwriting recognition system
should possess: fast response and flexibility. To achieve
these requirements, the knowledge base must be small
but robust [2]. Changes in style or orientation should be
handled by the flexible prototypes that contain widely
valid descriptions of character information.

In this paper, in order to overcome the complexities
of Persian handwriting and to achieve the above
requirements, a practical fuzzy approach is proposed. In
this approach, the online stroke is first preprocessed and
segmented into tokens and the features of each token
are extracted. A novel fuzzy classifier is then used to
recognize the characters. In this classifier, the end token
of the strokes are classified by using the fuzzy learning
vector quantization (FLVQ) algorithm and the other
tokens are characterized by using fuzzy linguistic terms
that describe simple representative features. The
knowledge base of this classifier is in the form of fuzzy
rules that are extracted by an expert.

The rest of this paper is organized as follows: Section
2 presents a brief introduction to Persian handwriting
and previous works. Section 3 explains the
preprocessing and segmentation processes. Section 4
states the feature extraction process. In section 5 a
novel fuzzy classifier is introduced and the recognition
algorithm is presented. The experimental results are
given in Section 6, and the last section presents the
conclusions and future works.

2. Persian Handwriting and Previous Works

Persian characters are in cursive script. It comprises
32 main characters and is written from right to left.
Characters have up to four different forms, depending
on their position within a word (the beginning, middle,
end and isolated forms). Figure 1 presents samples of
different characters and their forms.

Also, the characters may be written in different forms
based on personal handwriting styles. Persian
characters have one main stroke and most of them have

Stroke1

Stroke2

Stroke3

Stroke4Stroke5Stroke7

Stroke6

also one to three secondary strokes. Usually the main
stroke is written first and then secondary strokes are
written. In Figure 2, strokes number 1, 3, and 6 are the
main strokes. The secondary strokes may be in the form
of dots, "sarkesh", and "daste".

There are some works devoted to recognition of
online Persian/Arabic handwriting characters. Al-
Emami used a structural analysis method for selecting
features of Arabic characters and a decision tree for the
classification [3]. Alimi introduced a Neuro-Fuzzy
approach in [4] and a template matching and dynamic
programming approach in [5]. In [6] combination of
pruned Kohonen maps and in [7] combination of SOM
and Perceptron is used to recognize online Arabic
handwritten characters. A Persian handwriting
recognition system is also introduced in [8] which is
based on representing input data and character patterns
using linguistic terms and comparisons of these terms.
Recently we introduced a novel fuzzy approach in [9]
that uses a fuzzy rule-based approach, where the rules
are formed only by an expert. In this work, we have
extended that approach to use the FLVQ learning
model to improve the recognition results.

 Since none of the above approaches were applied on
the same data set, and many of them were not tested on
independent and extensive test sets, it is not a fair
match to compare how these approaches did against
each other.

Figure 1. Sample of Persian printed
characters and their forms in different
positions within the word.

3. Preprocessing and Segmentation

In this section, we present the proposed
preprocessing and segmentation methods. The input
data are acquired in the form of a list of (x, y)
coordinates. First, the input data are externally
separated into strokes by the help of pen-ups. In Figure
2, some sample strokes are shown. Then, the noise
reduction process is applied through smoothing and

filtering steps. Smoothing averages the coordinates of a
point using its neighboring pixels, and the filtering
reduces the number of points by eliminating very close
points. This filtering technique forces a minimum
distance between consecutive points.

Figure 2. Some sample strokes.

After preprocessing our internal segmentation
method is applied. It aims at separating each stroke into
a set of small parts called tokens. In Figure 4, each star
mark shows the end point of a token. These tokens can
be lines, arcs or loops. Some features are used to
describe the properties of each token.

To start the task, we first convert the list of (x, y)
coordinates of input points into a set of vectors, each
starting from one of the points and ending at the next
point. Figure 3 shows vectors that link the input points.

P0

P1
P2

P4

P5
V0

V1V2

V3
P0

P1
P2

P4

P5
V0

V1V2

V3

Figure 3. Vectors between points.

The angle between two consecutive vectors Vi and

Vi+1 is noted as Ai. The sign of Ai is considered as the
curvature side at point Pi. For a sequence of points, the
total curvature side is the sign of the sum of angles
along the sequence.

At this stage, any point in which Ai exceeds a certain

threshold, T1, can be a candidate for the end of token.
Also, when Ai exceeds another threshold T2 (less than
T1) and curvature side at point Pi is opposed to the total
curvature side, the Pi is a segmentation candidate. So,
we save this point and start the process from the next
point.

To finalize the segmentation task, a loop detection

(1) 180)(180
180)(180

,..:

1

11

11

1









∠−∠
>=∠−∠−∠−∠
−<=∠−∠+∠−∠

=

+

++

++

otherwiseVV
VVVV

VVVV
A

VVInput

ii

iiii

iiii

i

n

*
**

*
*

*

method is used to find the loops and deletes additional
candidate segmentation points that locate on them. It
also defines new segmentation points. Two procedures
are considered for this purpose; one that detects closed
loops and the other that detects open loops that appear
at the start of the strokes.

To detect closed loops, the trajectory of the pen
movement is saved. If this trajectory intersects itself,
and the points between the previous and current visit of
the point construct a circle like curve, a closed loop is
detected and two new segmentation points add at the
start and end of this loop.

Open loops are always located at the start of the
stroke. To find them, we start from the beginning of the
stroke and for each point of it compute the distance
between this point and the start point of that stroke and
save these values in an array. The first local minima in
this array, if exists any, is selected. If this value is small
relative to the length of the curve up to corresponding
point, and the curve is circle like, this point is
considered as the end of the open loop. Otherwise, we
continue the process from the next point.

As described above, in this work in contrast to the
other works [2, 8, 9], a loop detection process is used to
complete the segmentation process and to make the
resulting tokens more meaningful. Figure 4 shows some
segmentation samples.

Figure 4. Samples of segmentation. The
end point of each token is shown with a *
mark.

4. Feature Extraction

After the input data is segmented, each token is
described using a set of features. These are defined
below.

1) Start2End_Direction: The direction of the straight
line that starts from the first point of the token and end
at the last point.

(2)))/()((tan 1
startendstatrtend XXYY −−=Φ −

2) Start2COG_Direction: The direction of the straight

line that starts from the first point of the token and ends
at the center of gravity of the token.

3) End2COG_Direction: The direction of the straight
line that starts from the last point of the token and ends
at the center of gravity of the token.

4) Straightness: A new straightness measure that
performs much better than the measure introduced in
[10, 11]. This measure is the angle between the
Start2COG_Direction and End2COG_Direction. Value
of this measure for a direct line is 180 and for a circle is
zero.

5) Horizontal_Motion: The relative horizontal
motion in the written token profile:

(3) 1

1 1

minmax

∑ −

= + −

−
= N

i ii xx

xx
HM

6) Vertical_Motion: The relative vertical motion in
the written token profile:

(4) 1

1 1

minmax

∑ −

= + −

−
= N

i ii yy

yy
VM

7) Curvature_Side: The direction of concavity
computed by:

(5))(1

1∑ −

=
=

N

i iASignSideCurvature

where Ai is defined in (1). If this value is negative, the
curvature side is assumed to be clockwise, and
otherwise it is counter clockwise. These two terms are
referred to as CWC and CCWC through the paper.

7) Aspect Ratio: Is computed by dividing the vertical
size of the token by its horizontal size as:

(6)
minmax

minmax

xx
yy

RatioAspect
−
−

=

5. Fuzzy Classifier Using FLVQ

The next step after the feature extraction process is to
create a classifier. This classifier must contain one or
several rules for each character to identify the main
stroke of it. In this section we first explain our fuzzy
classifier and then the recognition algorithm is
introduced to classify the inputs.

5.1. Fuzzy Classifier Formation

In this section, we split the tokens into two groups:
The end tokens and the non end tokens. The tokens that
appear at the end of the strokes are end tokens and the
other tokens are non end tokens. If a stroke contains
only one token, it is trivial that this token is an end
token.

Since the classification of end tokens is a
cumbersome task (as the expert has not already found

appropriate set of rules), in this paper, we use the
FLVQ learning model to automatically classify the end
tokens. The Non end tokens are characterized by the
expert and for describing them, the expert uses
linguistic terms. In this subsection, we first introduce
the FLVQ algorithm and then we describe the proposed
rule-based creation method.

5.1.1 FLVQ Algorithm

Here, we describe the FLVQ algorithm introduced in
[12]. Let { }ciNkU ki …… 1,1| === µ be the fuzzy

c-partition of training patterns { }NkxX k …1| == ,

and { }cimV i …1| == be the neuron's parametric
vectors. First, assume that the number of competing
neurons c is equal to the number of pattern classes. The
goal of the FLVQ algorithm is to minimize the below
objective function:

[] (7)),(
1 1

ki

N

k

c

i

m
ki

m
ki

m DtVUQ ∑∑
= =

−= µ

Subjected to the constraints:

(8) ik, ;]1,0[andk ;1
1

ki ∀∈∀=∑
=

c

i
ki µµ

Where
2

ikki mxD −= is the distance between

neuron i and training pattern k, m is a fuzziness
parameter greater than 1, and }1,0{∈kit is the target
class membership value of neuron i for input pattern k.

The FLVQ learning law is:

(9) i];)(][)[(

)()1(

∀−−

+=+

tmxtt

tmtm

ik
m

ki
m

ki

ii

µα

And the membership updating rule is:

(10))(
1

1

1
1 −

=

− 







= ∑

c

l

m

kl

ki
ki D

D
µ

The extension of above mentioned learning technique
is illustrated in Figure 5. It can be seen that by-passing
the MIN layer results in the algorithm described above.
Recall that the number of competing neurons has been
assumed to be equal to the number of pattern classes.
Such assumption can be relaxed by introducing the
MIN layer to handle multiple neurons per pattern class
network design. Consequently, the neuron
underutilization problem in LVQ is resolved.

Corresponding to the general network architecture,
the learning algorithm is modified as follows. First, the
distance computation is redefined as:

(11) min ijk
Sj

ki mxD
i

−=
∈

Where Si is the index set of the competing neurons
for pattern class I, and mij is jth competing neuron's
parametric vector for pattern class i. Thus, the
FLVQ learning law will be:

(12) i];)(][[)(

)()1(

∀−−

+=+

tmxtIt

tmtm

ik
m

ki
m

kiij

ii

µα

Where:





 ∈∀−≤−=

(13) 0
Sl 1 i

otherwise
mxmxifI ilkijk

ij

Figure 5.Typical FLVQ network [12].

Here, we use this FLVQ network to classify the end

tokens. The input pattern to this network is a vector of
features introduced in Section 4. The number of clusters
is fixed to 10 (number of different types of end tokens).
Figure 6 shows the members of different clusters. By
using this network, we find memberships of the input to
the clusters. The identifiers of these clusters are used in
the final rules.

5.1.2 Fuzzy Rule-Based Creation

The knowledge base used in this paper, is in the form
of fuzzy rules which found by an expert. To overcome
the problems existing in multi-writer environments, the
defined prototypes must maintain the syntax of the
rules as short as possible to describe a multitude of
character styles and simultaneously to process enough
semantic information to distinguish the symbols easily

[11].
To define a rule, at first, some tokens are chosen to

describe the main stroke of the character. The end token
of the stroke is identified only by the identifier of the
related cluster in the FLVQ network.

For non end tokens, some features are selected by the
expert to describe them. The Expert uses Straightness,
End2COG_Direction, and Curvature_Side features to
describe circle-like curves and uses Straightness,
Start2End_Direction, and Curvature_Side features, for
other types of curves. Then, for each feature, an
appropriate linguistic term is chosen. The memberships
of some of these linguistic terms are shown in Figures 7
and 8. The linguistic terms in Figure 8 are the
abbreviations of the eight directions: East, North East,
North, North West, West, South West, South, South
East, and East.

١

٢
٣

٤

٥

٦

٧

٨

٩

١٠

Figure 6. The members of different
clusters. The end point of each non end
token is shown with a * mark. For the
characters that have more than one token,
the end token is considered.

Figure 7. Fuzzy sets of the type variable.

E NE

360

1.0

Ф

N NW W SW S SE E

31527022518013590 450

E NE

360

1.0

Ф

N NW W SW S SE E

31527022518013590 450

Figure 8. Fuzzy sets of the Direction
variables.

Sometimes more than one linguistic term is needed to

describe a feature of a non end token or several ways
are exist to segment a stroke into tokens. In these cases
more than one rule is used. Table 1 presents three
sample rules which are used to define three characters
shown in Figure 4. Each row of this table is related to
one of the tokens of the character.

Table 1. Samples of rule definition.

5.2. Proposed Recognition Algorithm

In Section 5.1, we described the rule-based
formation. This subsection presents the purposed
classification algorithm that determines the
corresponding class using the extracted tokens.

The amount of similarity between the input token and
a token of a rule is computed as follows.
− If a rule token has a cluster number, we use FLVQ

network and find the membership of the input
token to the corresponding cluster using (10); If
this value is less than 0.1, we replace it by 0.

− Otherwise, we consider the fuzzy sets
corresponding to the linguistic terms in the rule and
find the minimum of the membership values of the
input token features to the related fuzzy sets.

Since there might be extra short tokens in the input
(which do not match with any tokens), to compute the

 Cluster Straightness
End2COG
Direction

Start2COG
Direction

Curvature
Side

'Seen'
1 ------- Semicircle -------- W CWC
2 ------- Semicircle -------- W CWC
3 6 -------- -------- -------- --------
'Eyn'
1 ------- Semicircle -------- S CCWC
2 9 -------- -------- -------- --------
'Sad'
1 ------- Circle NE --------- --------
2 ------- Arc -------- W --------
3 6 -------- -------- -------- --------

*

*

**
*

**

*

**

*

1801501206030

1
Circle SemiCircle Arc

Straightness

similarity between an input sequence of tokens with a
rule, we find, if possible, the input tokens that are most
similar to the rule tokens. The other of these tokens
must also be corresponding to the order of the rule
tokens. If this task is not possible, the total similarity
value is set to zero, otherwise it is set to the minimum
of the similarity of the achieved input tokens to the
corresponding rule tokens.

Finally, the total similarity value is considered as a
positive measure (PM) and the sum of the relative
lengths of the unused input tokens is considered as a
negative measure (NM). To recognize the class of the
input, we find the rule that maximizes this equation:

(14) NMPMO ×−= α
Where α is a constant coefficient.

6. Experimental Results

In this work, we use the relatively complete database
introduced in [13] that contains the isolated characters
written by 128 persons.

As there is no general bench mark for online
handwriting recognition algorithm in Persian, we could
not compare our result with other works quantitatively.

The recognition rate of the purposed method on this
database is near 88% and improves to about 95% when
tuning the parameters for a query writer. It must be
noted that the performance of the proposed algorithm
are more accurate when compared with the most recent
results reported in [8, 9]. In addition, the computational
cost of our approach is also much less than that of the
approach introduced in [8]; and thus can be used in
online environments. The number of the rules used in
this test is 30.

7. Conclusion and Future Directions

There are very few available approaches for
recognition of online Persian handwriting. In this paper,
a novel method which is based on representation of
input tokens with very simple features, using
combination of a fuzzy rule-based and the FLVQ
network is presented and a fuzzy inference is also
introduced. As opposed to other available methods, an
important advantage of the purposed method is its
ability to segment the strokes into meaningful tokens.
As presented in Section 6, this approach has been quite
successful in accepting a wide range of variations for
each letter and has shown promising results.

To follow this research, we are now working on
recognition of the secondary strokes, to further improve
the recognition results.

Acknowledgement

This work was in part supported by a grant
from ITRC.

References

[1] I. S. I. Abuhaiba, M. J. J. Holt, S. Datta, “Recognition of

Off-Line Cursive Handwriting”, Computer Vision and
Image Processing, Vol. 71, No. 1, pp. 19-38, 1998.

[2] A. Malaviya, R. Klette, "A Fuzzy Syntactic Method for
On-line Handwriting Recognition", Lecture notes in
Computer Science 1121, Springer, Advances in
Structural and Syntactical Pattern recognition, SSPR'96,
pp. 381-392, 1996.

[3] Al-Emami, S. and Usher, M. “On-Line Recognition of
Handwritten Arabic Characters”, IEEE Transactions on
Pattern Analysis and Machine Intelligence, Vol. 12, No.
7, July 1990. pp. 704-710.

 [4] A. M. Alimi , “A Neuro-Fuzzy Approach to Recognize
Arabic Handwritten Characters ” , IEEE International
Conference on Neural Network, vol. 3, pp. 1397 - 1400,
1997.

[5] A. Alimi, O. Ghorbel, “The Analysis of Error in an On-
Line Recognition System of Arabic Handwritten
Characters”, Proceedings of ICDAR 1995, pp. 890-893,
14-16 August 1995, Montreal, Canada.

[6] N. Mezghani, M. Cheriet, "Combination of Pruned
Kohenon Maps for On-line Arabic Character
Recognition", Proceedings of the Seventh International
Conf. on Document Analysis and Recognition
(ICDAR'03), pp. 900-905 , Edinburgh, Scotland, August
2003.

[7] T. Klassen, "Towards Neural Network Recognition of
Handwritten Arabic Letters", MS. Thesis, Dalhousie
University, Halifax, Nova Scotia, 2001.

[8] R. Halavati, S. B. Souraki, M. Soleymani, “Persian On-
line Handwriting Recognition Using Fuzzy Modeling”,
to be published in IFSA’05, Beijing, China, July 2005.

[9] M. Soleymani Baghshah, S. Bagheri Souraki, S. Kasaei,
“A Novel Fuzzy Approach to Recognition of Online
Persian Handwriting”, to be published in ISDA’05,
Wroclaw, Poland, September 2005.

[10] Romesh Ranawana, Vasile Palade, G.E.M.D.C. Bandara,
"An Efficient Fuzzy Method for Handwritten Character
Recognition", Proceedings of KES2004, pp.698-707,
Wellington, New Zealand, September 2004.

[11] A. Malaviya, L. Peters, R. Camposano, "A Fuzzy Online
Handwriting Recognition System : FOHRES", Second
international conference on Fuzzy Theory and
Technology, Durham, NC, Oct.13-16, 1993.

[12] F. L. Chung, T. Lee, "A Fuzzy Learning Model for
Membership Function Estimation and Pattern
Classification", IEEE International Conference on Fuzzy
Systems, 1:426-431, 1994.

[13] S. M. Razavi, E. Kabir, "A Data base for Online Persian
Handwritten recognition", 6th Conference on Intelligent
Systems, Kerman, Iran, 2004.

