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Abstract 
 

Fuzzy logic is a powerful tool to represent imprecise 
and irregular patterns. This paper presents a novel 
fuzzy approach for recognizing online Persian (Farsi) 
handwriting. In this approach, a fuzzy classifier is 
introduced that uses a combination of the fuzzy LVQ 
learning model and the expert knowledge. This method 
applies an FLVQ network to distinguish between the 
similar tokens that appear at the end of the strokes. For 
other tokens, fuzzy linguistic terms are used to describe 
their features. The purposed method was run on a 
database of Persian isolated handwritten characters 
and achieved a high recognition rate compared to other 
available approaches.  

  
Keywords: Persian Handwriting, Fuzzy Rule-Based, 
FLVQ, Recognition. 
 
1. Introduction 

   
The Persian character set (along with similar 

character sets) are used by more than 30% of the 
world's population and serve in the writing of many 
widespread languages such as Arabic and Aurdo [1]. In 
contrast to the advances in the online Latin and Chinese 
handwriting recognition, relatively few studies have 
been devoted to the Persian handwriting recognition. 
This is due, in part, to the cursive nature of the task. 

In the last two decades a number of online 
handwriting recognition systems have been developed. 
Most of them employ stochastic methods (like hidden 
Markov models), connective learning-based methods 
(like neural networks), model matching, and 
structural/syntactical techniques. The major drawback 
of all previous methods is their high-dependability on 
small writing perturbations that tends to imprecise 
recognition results when working with very vast variety 
of writing styles. 

Considering the limitation and drawbacks of the 

existing approaches, we define two major 
characteristics that a handwriting recognition system 
should possess: fast response and flexibility. To achieve 
these requirements, the knowledge base must be small 
but robust [2]. Changes in style or orientation should be 
handled by the flexible prototypes that contain widely 
valid descriptions of character information.  

In this paper, in order to overcome the complexities 
of Persian handwriting and to achieve the above 
requirements, a practical fuzzy approach is proposed. In 
this approach, the online stroke is first preprocessed and 
segmented into tokens and the features of each token 
are extracted. A novel fuzzy classifier is then used to 
recognize the characters. In this classifier, the end token 
of the strokes are classified by using the fuzzy learning 
vector quantization (FLVQ) algorithm and the other 
tokens are characterized by using fuzzy linguistic terms 
that describe simple representative features. The 
knowledge base of this classifier is in the form of fuzzy 
rules that are extracted by an expert. 

The rest of this paper is organized as follows: Section 
2 presents a brief introduction to Persian handwriting 
and previous works. Section 3 explains the 
preprocessing and segmentation processes. Section 4 
states the feature extraction process. In section 5 a 
novel fuzzy classifier is introduced and the recognition 
algorithm is presented. The experimental results are 
given in Section 6, and the last section presents the 
conclusions and future works. 

  
2. Persian Handwriting and Previous Works 
 

Persian characters are in cursive script. It comprises 
32 main characters and is written from right to left. 
Characters have up to four different forms, depending 
on their position within a word (the beginning, middle, 
end and isolated forms). Figure 1 presents samples of 
different characters and their forms. 

Also, the characters may be written in different forms 
based on personal handwriting styles. Persian 
characters have one main stroke and most of them have 
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also one to three secondary strokes. Usually the main 
stroke is written first and then secondary strokes are 
written. In Figure 2, strokes number 1, 3, and 6 are the 
main strokes. The secondary strokes may be in the form 
of dots, "sarkesh", and "daste".  

There are some works devoted to recognition of 
online Persian/Arabic handwriting characters. Al-
Emami used a structural analysis method for selecting 
features of Arabic characters and a decision tree for the 
classification [3]. Alimi introduced a Neuro-Fuzzy 
approach in [4] and a template matching and dynamic 
programming approach in [5]. In [6] combination of 
pruned Kohonen maps and in [7] combination of SOM 
and Perceptron is used to recognize online Arabic 
handwritten characters. A Persian handwriting 
recognition system is also introduced in [8] which is 
based on representing input data and character patterns 
using linguistic terms and comparisons of these terms. 
Recently we introduced a novel fuzzy approach in [9] 
that uses a fuzzy rule-based approach, where the rules 
are formed only by an expert. In this work, we have 
extended that approach to use the FLVQ learning 
model to improve the recognition results. 

 Since none of the above approaches were applied on 
the same data set, and many of them were not tested on 
independent and extensive test sets, it is not a fair 
match to compare how these approaches did against 
each other. 

 

                   
Figure 1. Sample of Persian printed 
characters and their forms in different 
positions within the word. 
 

3. Preprocessing and Segmentation 
 

In this section, we present the proposed 
preprocessing and segmentation methods. The input 
data are acquired in the form of a list of (x, y) 
coordinates. First, the input data are externally 
separated into strokes by the help of pen-ups. In Figure 
2, some sample strokes are shown. Then, the noise 
reduction process is applied through smoothing and 

filtering steps. Smoothing averages the coordinates of a 
point using its neighboring pixels, and the filtering 
reduces the number of points by eliminating very close 
points. This filtering technique forces a minimum 
distance between consecutive points. 

 
 
 
 

Figure 2. Some sample strokes. 
 

After preprocessing our internal segmentation 
method is applied. It aims at separating each stroke into 
a set of small parts called tokens. In Figure 4, each star  
mark shows the end point of a token. These tokens can 
be lines, arcs or loops. Some features are used to 
describe the properties of each token. 

To start the task, we first convert the list of (x, y) 
coordinates of input points into a set of vectors, each 
starting from one of the points and ending at the next 
point. Figure 3 shows vectors that link the input points. 
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Figure 3. Vectors between points. 

 
The angle between two consecutive vectors Vi and 

Vi+1 is noted as Ai. The sign of Ai is considered as the 
curvature side at point Pi. For a sequence of points, the 
total curvature side is the sign of the sum of angles 
along the sequence. 

 
At this stage, any point in which Ai exceeds a certain 

threshold, T1, can be a candidate for the end of token. 
Also, when Ai exceeds another threshold T2 (less than 
T1) and curvature side at point Pi is opposed to the total 
curvature side, the Pi is a segmentation candidate. So, 
we save this point and start the process from the next 
point.  

To finalize the segmentation task, a loop detection 
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method is used to find the loops and deletes additional 
candidate segmentation points that locate on them. It 
also defines new segmentation points. Two procedures 
are considered for this purpose; one that detects closed 
loops and the other that detects open loops that appear 
at the start of the strokes.  

To detect closed loops, the trajectory of the pen 
movement is saved. If this trajectory intersects itself, 
and the points between the previous and current visit of 
the point construct a circle like curve, a closed loop is 
detected and two new segmentation points add at the 
start and end of this loop. 

Open loops are always located at the start of the 
stroke. To find them, we start from the beginning of the 
stroke and for each point of it compute the distance 
between this point and the start point of that stroke and 
save these values in an array. The first local minima in 
this array, if exists any, is selected. If this value is small 
relative to the length of the curve up to corresponding 
point, and the curve is circle like, this point is 
considered as the end of the open loop. Otherwise, we 
continue the process from the next point. 

As described above, in this work in contrast to the 
other works [2, 8, 9], a loop detection process is used to 
complete the segmentation process and to make the 
resulting tokens more meaningful. Figure 4 shows some 
segmentation samples.  

 
 

 
 
 
 
 

Figure 4. Samples of segmentation. The 
end point of each token is shown with a * 
mark.  
 

4. Feature Extraction  
 

After the input data is segmented, each token is 
described using a set of features. These are defined 
below. 

1) Start2End_Direction: The direction of the straight 
line that starts from the first point of the token and end 
at the last point.  
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2) Start2COG_Direction: The direction of the straight 

line that starts from the first point of the token and ends 
at the center of gravity of the token.  

3) End2COG_Direction: The direction of the straight 
line that starts from the last point of the token and ends 
at the center of gravity of the token.  

4) Straightness: A new straightness measure that 
performs much better than the measure introduced in 
[10, 11]. This measure is the angle between the 
Start2COG_Direction and End2COG_Direction. Value 
of this measure for a direct line is 180 and for a circle is 
zero. 

5) Horizontal_Motion: The relative horizontal 
motion in the written token profile: 
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6) Vertical_Motion: The relative vertical motion in 
the written token profile: 
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7) Curvature_Side: The direction of concavity 
computed by: 
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where Ai is defined in (1). If this value is negative, the 
curvature side is assumed to be clockwise, and 
otherwise it is counter clockwise. These two terms are 
referred to as CWC and CCWC through the paper. 

7) Aspect Ratio: Is computed by dividing the vertical 
size of the token by its horizontal size as: 
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5. Fuzzy Classifier Using FLVQ 
 

The next step after the feature extraction process is to 
create a classifier. This classifier must contain one or 
several rules for each character to identify the main 
stroke of it. In this section we first explain our fuzzy 
classifier and then the recognition algorithm is 
introduced to classify the inputs. 

 
5.1. Fuzzy Classifier Formation 
 

In this section, we split the tokens into two groups: 
The end tokens and the non end tokens. The tokens that 
appear at the end of the strokes are end tokens and the 
other tokens are non end tokens. If a stroke contains 
only one token, it is trivial that this token is an end 
token. 

Since the classification of end tokens is a 
cumbersome task (as the expert has not already found 



appropriate set of rules), in this paper, we use the 
FLVQ learning model to automatically classify the end 
tokens. The Non end tokens are characterized by the 
expert and for describing them, the expert uses 
linguistic terms. In this subsection, we first introduce 
the FLVQ algorithm and then we describe the proposed 
rule-based creation method. 
 
5.1.1 FLVQ Algorithm 
 

Here, we describe the FLVQ algorithm introduced in 
[12]. Let { }ciNkU ki …… 1,1| === µ be the fuzzy 

c-partition of training patterns { }NkxX k …1| == , 

and { }cimV i …1| == be the neuron's parametric 
vectors. First, assume that the number of competing 
neurons c is equal to the number of pattern classes. The 
goal of the FLVQ algorithm is to minimize the below 
objective function: 
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Where
2

ikki mxD −= is the distance between 

neuron i and training pattern k, m is a fuzziness 
parameter greater than 1, and }1,0{∈kit  is the target 
class membership value of neuron i for input pattern k.  

The FLVQ learning law is: 
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And the membership updating rule is: 
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The extension of above mentioned learning technique 
is illustrated in Figure 5. It can be seen that by-passing 
the MIN layer results in the algorithm described above. 
Recall that the number of competing neurons has been 
assumed to be equal to the number of pattern classes. 
Such assumption can be relaxed by introducing the 
MIN layer to handle multiple neurons per pattern class 
network design. Consequently, the neuron 
underutilization problem in LVQ is resolved.  

Corresponding to the general network architecture, 
the learning algorithm is modified as follows. First, the 
distance computation is redefined as: 
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Where Si is the index set of the competing neurons 
for pattern class I, and mij is jth competing neuron's 
parametric vector for pattern class i. Thus, the 
FLVQ learning law will be: 
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Figure 5.Typical FLVQ network [12]. 

 
Here, we use this FLVQ network to classify the end 

tokens. The input pattern to this network is a vector of 
features introduced in Section 4. The number of clusters 
is fixed to 10 (number of different types of end tokens). 
Figure 6 shows the members of different clusters. By 
using this network, we find memberships of the input to 
the clusters. The identifiers of these clusters are used in 
the final rules. 

 
5.1.2 Fuzzy Rule-Based Creation  
 

The knowledge base used in this paper, is in the form 
of fuzzy rules which found by an expert. To overcome 
the problems existing in multi-writer environments, the 
defined prototypes must maintain the syntax of the 
rules as short as possible to describe a multitude of 
character styles and simultaneously to process enough 
semantic information to distinguish the symbols easily 



[11].   
To define a rule, at first, some tokens are chosen to 

describe the main stroke of the character. The end token 
of the stroke is identified only by the identifier of the 
related cluster in the FLVQ network.  

For non end tokens, some features are selected by the 
expert to describe them. The Expert uses Straightness, 
End2COG_Direction, and Curvature_Side features to 
describe circle-like curves and uses Straightness, 
Start2End_Direction, and Curvature_Side features, for 
other types of curves. Then, for each feature, an 
appropriate linguistic term is chosen. The memberships 
of some of these linguistic terms are shown in Figures 7 
and 8. The linguistic terms in Figure 8 are the 
abbreviations of the eight directions: East, North East, 
North, North West, West, South West, South, South 
East, and East. 
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Figure 6. The members of different 
clusters. The end point of each non end 
token is shown with a * mark. For the 
characters that have more than one token, 
the end token is considered. 

 

 
Figure 7. Fuzzy sets of the type variable. 
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Figure 8. Fuzzy sets of the Direction 
variables. 

 
Sometimes more than one linguistic term is needed to 

describe a feature of a non end token or several ways 
are exist to segment a stroke into tokens. In these cases 
more than one rule is used. Table 1 presents three 
sample rules which are used to define three characters 
shown in Figure 4. Each row of this table is related to 
one of the tokens of the character.  

 
Table 1. Samples of rule definition. 

 
5.2. Proposed Recognition Algorithm 
 

In Section 5.1, we described the rule-based 
formation. This subsection presents the purposed 
classification algorithm that determines the 
corresponding class using the extracted tokens. 

The amount of similarity between the input token and 
a token of a rule is computed as follows.  
− If a rule token has a cluster number, we use FLVQ 

network and find the membership of the input 
token to the corresponding cluster using (10); If 
this value is less than 0.1, we replace it by 0.  

− Otherwise, we consider the fuzzy sets 
corresponding to the linguistic terms in the rule and 
find the minimum of the membership values of the 
input token features to the related fuzzy sets.   

Since there might be extra short tokens in the input 
(which do not match with any tokens), to compute the 

 Cluster Straightness 
End2COG 
Direction 

Start2COG 
Direction 

Curvature 
Side 

'Seen'  
1 ------- Semicircle -------- W CWC 
2 ------- Semicircle -------- W CWC 
3 6 -------- -------- -------- -------- 
'Eyn' 
1 ------- Semicircle -------- S CCWC 
2 9 -------- -------- -------- -------- 
'Sad' 
1 ------- Circle NE --------- -------- 
2 ------- Arc -------- W -------- 
3 6 -------- -------- -------- -------- 

*

*
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*

**

*

1801501206030

1
Circle  SemiCircle  Arc  

Straightness



similarity between an input sequence of tokens with a 
rule, we find, if possible, the input tokens that are most 
similar to the rule tokens. The other of these tokens 
must also be corresponding to the order of the rule 
tokens. If this task is not possible, the total similarity 
value is set to zero, otherwise it is set to the minimum 
of the similarity of the achieved input tokens to the 
corresponding rule tokens.  

Finally, the total similarity value is considered as a 
positive measure (PM) and the sum of the relative 
lengths of the unused input tokens is considered as a 
negative measure (NM). To recognize the class of the 
input, we find the rule that maximizes this equation: 

(14)                               NMPMO ×−= α  
Where α is a constant coefficient. 
 
6. Experimental Results 
 

In this work, we use the relatively complete database 
introduced in [13] that contains the isolated characters 
written by 128 persons.  

As there is no general bench mark for online 
handwriting recognition algorithm in Persian, we could 
not compare our result with other works quantitatively.  

The recognition rate of the purposed method on this 
database is near 88% and improves to about 95% when 
tuning the parameters for a query writer. It must be 
noted that the performance of the proposed algorithm 
are more accurate when compared with the most recent 
results reported in [8, 9]. In addition, the computational 
cost of our approach is also much less than that of the 
approach introduced in [8]; and thus can be used in 
online environments. The number of the rules used in 
this test is 30.  

 
7. Conclusion and Future Directions 
 

There are very few available approaches for 
recognition of online Persian handwriting. In this paper, 
a novel method which is based on representation of 
input tokens with very simple features, using 
combination of a fuzzy rule-based and the FLVQ 
network is presented and a fuzzy inference is also 
introduced. As opposed to other available methods, an 
important advantage of the purposed method is its 
ability to segment the strokes into meaningful tokens. 
As presented in Section 6, this approach has been quite 
successful in accepting a wide range of variations for 
each letter and has shown promising results.  

To follow this research, we are now working on 
recognition of the secondary strokes, to further improve 
the recognition results. 
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