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Abstract—Cysts are one of the most common lesions in kidneys
and can be diagnosed exploiting ultrasound images. In this
paper, we develop an automatic approach for cyst segmentation
in ultrasound images. The proposed approach comprises three
steps: �nding a seed point in the object exploiting the Gibbs
random �eld, detecting the boundary based on multiresolution
signal processing and edge re�ning, and �nally shape model
features extracting to verify whether the object is a cyst. The
proposed approach is fast and less complex to suit ultrasound
exploration applications.

I. INTRODUCTION

The computer aided diagnosis (CAD) refers to the usage
of computers to help doctors to recognize the abnormal areas
in medical images[3]. Although simple renal cysts (�uid
�lled objects) are vaguely mentioned in CAD but they are
extremely common in adults and are present in 25 − 50% of
subjects over the age of 50. Approximately, 40% of patients
treated by long term hemodialysis develop renal cysts and
some kinds of hereditary cysts can affect kidney develop-
ment [1], [2]. The region growing, snakes, watershed, and
texture homogeneity assessment are well known approaches
for segmentation and frequently applied to medical images
[3], [10]. Since we deal with ultrasound images (which are
used in exploration and diagnosis issues), we seek for a fast
algorithm therefore iterative approaches listed above become
inef�cient. In our approach, �rst a probability value (exploiting
GRF) is allocated to each pixel to determine the possibility of
being included in a cyst, for each pixel. Indeed a supervised
estimation which involves texture and location is performed
based on theoretical de�nition and training cases of cysts.
After extracting the seed point as the point with maximum
probability, the image is sliced to radial lines and each line
is treated as a 1 − D sequence, fed to wavelet transform for
discontinuity detection in different resolutions (coarse to �ne).
This 1 − D approach is more computationally ef�cient than
the 2 − D multiresolution segmentation techniques. Knowing
the edges through all radiuses (slices), the boundary can be
constructed by �nding their associated points in the image.
Object segmentation is accomplished by boundary re�nement
to suppress unusual deviations in the boundary. To certify
doctors and ensure them whether the object is actually a cyst
or not, the last section presents shape model parameters. This

part gives 3 benchmarks for making decision about object’s
inherent.

II. SEED POINT EXTRACTION

To extract the seed point (a pixel in the object) a probability
Pc is allocated to each pixel u of the undergoing image. This
probability can tell us how probable it is for pixel u to belong
to a cyst. The pixel S associated with the maximum probability
will be selected as the seed point.

S = argmax
u

{Pc(u)}. (1)

Assume that the undergoing image has the size of p × q,
therefore N (the set of known random variables) is determined
by N = {I1, ..., Ipq , L1, ..., Lpq}. Where Ik is the intensity
of pixel k and Lk is its location. The cystis probability is a
function of N, de�ned by the conditional probability of:

Pc(u) = Pu(c | N) = Pu(c | Nm
u ). (2)

Assuming that the random �eld is an MRF, the probability
can be determined by using just an m × m neighborhood of
u, (Nm

u ). This assumption is premised frequently in ultrasound
image processing both in segmentation [3] and speckle reduc-
tion [4], [5] tasks.

Two empirical principals employed in probability approxi-
mation rise from the pathological description of cyst, which
de�ne it as: a dark and circular object with usually simple
uniform texture [2], and anatomic kidney characteristics about
its dept in ultrasound images. These two principals justify the
relation of the cystis probability of each pixel and its intensity,
location, and texture [1],[2].

From primary probability theory, choosing maximum of
P (c|N) and maximum of P (c,N) are congruent, for an image.
Constructing P (c,N), assume that the random variables {c,N}
are from GRF, their joint probability is in the form of:

P (c,N) = k exp (−U(c,N)). (3)

U(c,N) =
∑
Vci

Vci (4)

where k is a normalizing constant and Vci is the potential
associating with clique ci (each clique is a subset of random
variables). It can be shown that non-negative exponent U(.)



guarantees that the Gibbs random �eld is a Markov process
too. More details on GRF can be found in [6]. There are three
ingredients involved in U(.):

1) position: Existence of skin, fat tissue, and glandular
tissue, under probe and the dept of kidney location causes
cystis probability to not have a unique distribution for the
whole image. Since convex probes are used in image cap-
turing, polar representation of locations (r, θ) is more useful
(generally, rmin ≤ r ≤ rmax and |θ| ≤ θl). The upper and
lower limits can vary from one apparatus to another but are
identical in different images of one apparatus. Considering the
training cases, the following function is proposed as a part of
the zero–order clique potential.

f(x) =

{
4
5x4 |x| ≤ 1
1 − exp(−(ln 5)x4) |x| > 1

V1 = f( 4
π θ)f( r−rave

533−rave
).

(5)

2) intensity: This part of the zero–order clique potential
rises from the fact that cysts have lower density than normal
tissues [2]. Our experimental �ndings imply that the proba-
bility distribution of the cyst’s intensity can be discriminated
from that of normal tissue’s intensity, with acceptable accu-
racy. Equation (6) determines the role of intensity in the zero–
order potential.

V2 = |iu − (k1σ + µ)|. (6)

Where (µ) and (σ) denote the mean and variance of undergoing
image and k1 is a statistical value, estimated using training
data.

3) texture: Here, four different features are extracted to
represent texture. Twos of them are the vertical and horizontal
lines in a 5× 5 neighborhood; and are calculated using 2−D
correlation of neighborhood with vertical and horizontal ker-
nels shown in �gure 1. Other two features are the expectation
value of the difference between the central pixel u and those
on the perimeter of two different size windows. Suppose NW5

is the rectangular window of size 5 around u (then NW5 has 25
elements). Also, NP7 and NP9 are the pixels locating on the
perimeter of 7×7 and 9×9 rectangular windows, respectively
(certainly around u). So NP7 has 24 and NP9, has 32 elements.
By this notation following potentials are proposed as higher
order potentials:

v3 = |NW5 � kerh − (k2σ + µ)|. (7)

v4 = |NW5 � kerv − (k3σ + µ)|. (8)

v5 = E{(NP7 − iu)2}. (9)

v6 = E{(NP9 − iu)2}. (10)

Where � denotes the correlation operator. Exploiting these
texture features gives the probability map, low–frequency in-
herent and reduces the spike–like noises in it (notice the large
size windows employed). Such characteristic is extremely
desirable since we use global maximum of probability and
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Fig. 1. Line detection kernels; (a) vertical kerv ; (b) horizontal kerh.
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Fig. 2. (a) Ultrasound image of a kidney cyst; (b) associating cystis
probability map.

deal with a noisy image (ultrasound images have high amount
of noise and speckle, and we just applied a 3 median �lter for
noise reduction). Totally, the exponent value (4) is constructed
by weighting these potential functions. Fig. 2 shows an image
and its probability map.

U =
6∑

i=1

WiVi. (11)

III. RADIAL SEGMENTATION

Considering the high amount of noise in ultrasound im-
ages, here we employ a multiresolution–based decomposition
scheme for edge detection (coarse to �ne). To refrain from two
dimensional processing and its computation cost, the object is
sliced to some radial segments (number of slices is chosen
regarding the objects estimated perimeter) and edge detection
through each one of these slices is performed individually.
Finally, an edge re�nement is applied to improve the overall
accuracy of the proposed algorithm. Edge extraction through
each segment, independent of adjacent ones, makes the proce-
dure susceptible to noise. To increase its robustness, segmenta-
tion is applied to cystis probability (introduced in Section II),
instead of the crude image. Since texture information which
employs pixel’s neighborhood, contributes in the probability
calculation, the amount of noise in probability map is less
than that in the raw gray–scale image. Also, the exponential
function involved in the Gibbs joint probability equation (3),
sharpens the edges and increases the contrast between lesion
and normal tissue around (compare �g. 2–a and b).

An initial approximation of the lesion perimeter is acquired
through four diameters at 0, 45, 90 and 135 degrees. This
estimated perimeter determines the number of slices. A big
number of slices makes the approach time consuming while
a small number yields low angular resolution (which causes
probable destructive discontinuity in the boundary). Edges
through 8 radii shown in �gure 3–a are connected through
a �rst order hold interpolation to construct an enclosed object.
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Fig. 3. (a) The 8 radii of object employed for perimeter estimation; (b)
top: a typical sequence of cystis probability on a radius (b) down: associating
approximation in level 4.

The number of radial lines will be the same as the perimeter
of this arti�cial object.

A. multi resolution edge detection

Boundary detection consists of applying an edge detection
through each radii, radiated from the seed point. Pixels’ cystis
probability, among each radius of the object comprise a 1−D
sequence. Fig. 3-b depicts such a sequence. Regarding the
high amount of noise, the sequence is fed to wavelet transform
for decomposition in different resolutions.

Let x be a band–limited signal |f | ≤ f0. With dyadic
wavelet transform, in each level, the frequency space is halved
and x is split to two orthogonal subbands (one containing
the lower frequency content of x, called the approximation
(A), and the other containing the higher half–band of the
frequency space called the detail (D)). Down–sampling the
two consequent parts by 2, results in half resolution component
of input signal [7],[9]. Consequently, after k levels, a coarse
approximation with 1

2k resolution is achieved. Explicitly, ex-
traction of discontinuity in such low resolution (containing
the least amount of noise), is more reliable than the original
data. With a (coarse to �ne procedure technique, using the
information of one level back in the analysis stage, the edge
extracted from the low resolution subband can be computed
more precisely [10]. Here, the undergoing x[n] is fed to
a 4 − level wavelet analysis tree, with spline biorthogonal
wavelet functions of order 6 and 8 [8]. In our approach,
symmetry is an essential characteristic for �lters, because it
makes them linear–phase and prevents dephasing. It is vital to
know the amount of delay caused by �ltering in each level.
Below, signal depicted in Fig. 3–b is the approximation of
upper signal in the 1

16 resolution.
The edge point in CA4 (wavelet coef�cients in level 4),

denoted by E4, is the �rst local minimum in the gradient
sequence (regarding the sign), which satis�es a conditional
constraint in gradient amplitude. Local minima of gradient
sequence ( d CA

d n ), correspond to the zero–crossing points in
the Laplacian sequence (∇2 CA). so,

E4 = min
n

{
∇2[n − ε]∇2[n + ε] < 0
d

dn (CA4[n]) ≥ th
(12)

where th is a fraction of global minimum in gradient. The
radius constructing sequence x radiates from the seed point

(in the object) to outer part of object. Certainly inner pixels
have a bigger cystis probability than outer ones. Consequently,
a distinct transition from high–to–low occurs in CA4 and neg-
ative gradients are expected in the transition region, �g. 3–b.
This justi�es equation (12) regarding the sign of the gradient.

Moving one level back to reach a higher resolution (twice),
Ei in level i, maps to Ei−1 in level i − 1.

Ei−1 = 2 × Ei − d (13)

where d is the delay occurred by �ltering in analysis stage.
Because of twice resolution, there exists three pixels in the
neighborhood of Ei−1 that can be interpreted as the edge
point. Thus, a judgement is inevitable to determine one of
these adjacent points as the edge point in this resolution. In
fact, CAi−1 is used as a benchmark which can either verify
Ei−1 or replace it with one of its two adjacent neighbors,
which one has the less value of gradient (respecting to the
sign again):

Êi−1 = min
n

(CAi−1[n] − CAi−1[n − 1]). (14)

Ei−1 − 1 ≤ n ≤ Ei−1 + 1. (15)

Notice that CA4 has a far fundamental role in determining
the initial edge and CA3 is just used to re�ne it in a short
neighborhood. This re�nement is iteratively repeated till level
one. But moving from level one to level zero does not contain
a re�nement. Because of high amount of noise in ultrasound
images, D1 is assumed as noise, therefore the �nal edge point
(E0, edge in unity resolution) is Ê0 = E0 and the last detail
is abandoned.

B. boundary re�nement

After the edge detection through all radii, a boundary re-
�nement process is applied on the adjacent slices to eliminate
the indelicate �uctuations in the object boundary. The main
idea rises from the shape of the undergoing objects. In fact,
with respect to the number of slices, the edge distance in a
slice is not allowed to have a value out of the edge distance in
its two adjacent slices. Let Rk represent the distance between
the edge in the kth slice EK and the seed point S. Equation
(16) imposes such a constraint on the boundary and suppresses
undesirable distortions in it.

Rk = ‖Ek − S‖.

t = Rk − Rk−1+Rk+1
2 .

R̂k =
Rk−1 + Rk+1

2
+

t × |Rk+1 − Rk−1|
2t + ζ

(16)

where ‖.‖ denotes the Eucledian distance. The proposed �lter
removes all impulsive �uctuations in R, while preserving the
steps referring to the smoothing factor ζ. The big values of
the smoothing factor reduces the non–linearity characteristic
of the �lter. Figure 4 shows the object boundary before and
after the boundary re�nement stage.
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Fig. 4. The effect of boundary re�nement. (a)Initial boundary constructed
by multiresolution edge detection among different slices; (b)re�ned boundary
by exerting non–linear �lter after 3 iterations.

IV. SHAPE MODEL ASSISTANT

There are some objects with the same texture and intensity
as the cysts. It is worth to present a benchmark to assist doctors
with diagnosis. Although the objects such as hydronephroses
and some imaging artifacts resemble cysts in the texture, but
they have different shapes and their shape model presents ef�-
cient discriminating features. Based on the medical de�nition
of cysts, these object are usually circular and have a simple
shape. Consider r = {rk} as the set of distances between
boundary and center of mass rk = ‖Ek − C‖. then:

SD = E{(r − r)2}. (17)

PSER =
energy in lower 1

3 of PSD

total PSD energy
. (18)

CC = # of local maxima of R (19)

where C denotes object’s center of mass and PSD in feature
(18) denotes the power spectral density. The smoothness of
r, implies the roundness of the object. Three above features
give appropriate benchmark of the uniformity of r. Before
calculating these features a normalization factor 1

max{rk} is
applied to r. Stochastic information of the addressed features
are listed in Table I–B.

V. EXPERIMENTAL RESULTS

Proposed approach is applied to ultrasound images of renal
cyst, captured by ESAOTE technosmp. Here, 24 healthy cases
and 19 patients including females and males aged from 45 to
80, are involved in our experiment. The 17 cases out of these
43 samples are used for training and others for test. Only
in 2 cases the seed point was not successfully determined.
Successive seed point determining means that the extracted
seed point locates in the cyst. Both of failures were caused by
some imaging artifacts.

Fig. 5 shows an ultrasound image of a cyst and the result of
the proposed segmentation scheme. To present the quantitative
results of our automated segmentation process, three different
errors are assessed [3]. The mean of error (ME) is the mean of
the distance between the boundaries de�ned by the proposed
scheme and those delineated by the radiologist. Also, there
are two area error metrics pertaining to the difference of
cyst areas in manually delineate and automatic segmentation
processe. The false positive (FP) volume fraction represents
the area determined by the approach while it was not cyst
and volume fraction false negative (FN) is the cyst area,

TABLE I

(A) BOUNDARY ERRORS CORRESPONDING TO THE APPROACH; (B)

STOCHASTIC INFORMATION FOR SHAPE FEATURES.

ME FP% FN%
min 2.88 4.1 15.18
Ave. 5.86 11.11 31.25

Ave in [3] 6.68 20.85 24.95

SD PSER CC
Ave. 11.18 99.97% 2.25
var. 54.37 0.0018% 0.5

(A) (B)

(a) (b)

Fig. 5. Segmentation result; (a)crude image with cyst located in bottom left,
(b) segmented cyst by the proposed approach.

omitted in the approach. To acquire normalized criteria FP
and FN are divided by the area of delineated object. The best
results are ME=2.88, FP=4.1%, FN=15.18%. Table I–(A) lists
the average and minimum of these benchmarks through all
19 cases. The last row of the table represents the average
of the benchmarks, resulted from deformable contour–based
segmentation applied on breast lesions published in 2003
[3]. By comparison, our proposed scheme is faster and non–
iterative while tending to higher accuracy.
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