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Abstract: A robust skin detector is the primary need of many fields of computer vision, 
including face detection, gesture recognition, and pornography filtering. Less than 10 years 
ago, the first paper on automatic pornography filtering was published. Since then, different 
researchers claim different color spaces to be the best choice for skin detection in 
pornography filtering. Unfortunately, no comprehensive work is performed on evaluating 
different color spaces and their performance for detecting naked persons. As such, 
researchers usualy refer to the results of skin detection based on the work doen for face 
detection, which underlies different imaging conditions. In this paper, we examine 21 color 
spaces in all their possible representations for pixel-based skin detection in pornographic 
images. Consequently, this paper holds a large investigation in the field of skin detection, 
and a specific run on the pornographic images.  
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1 Introduction1 
With the rapid penetration of the Internet into every part of our daily life, it is agreed that it will be an important media 
for future communication, perhaps even more important than the television [1]. In 1996, it was estimated that the 
Internet was grown into an international network, connecting over 60 million users in more that 60 countries [2]. 
Though, it is proved that even for non-regular users of the Internet it is getting more and more contaminated with 
harmful content, such as pornography, violence, hatred and the forth. In a recent survey, one in four kids reported 
having at least one unwanted exposure to sexually explicit pictures during the past year, and one out of five reported 
receiving a sexual solicitation [3]. Also, an early investigation by a university student showed that approximately 83% 
of the images in the Usenet groups were pornographic (in 1995) [4]. Recent statistics reveal that 25% of the queries in 
search engines, 8% of emails, and 12% of homepages are porn-related [5,6] (see [7] for more statistics and [8, 9, 10, 11] 
for more details on the impact of the issue). 
While parents and educators tend to have more control on the information exposed to their children when surfing the 
web [12], the conventional textual approaches (such as NetNanny, CyberSitter, and SurfWatch) are not performing well 
[13]. While failing to give enough immunity, the text-filtering approaches also blocks many useful sites; just because of 
the presence of some certain phrases. For example, a commercial package blocked the White House children's page in 
1996 [14]. On the other hand, the owners of the harmful sites are inventing new methods for shutting down the text-
searching immunity systems. Approaches like only-picture pages and safely-named files are now just common. 
Consequently, in the recent years the pictorial content-based filtering is gathering more and more attention. 
To have an idea about the importance of the images for content-based internet filtering, it is useful to review the results 
of a recent survey. The statistics of more than 4,000,000 HTML pages reveal that more than 70% of them contain 
images [15]. Also, the results show that a single HTML file, averagely contains 18.8 images [15]. The statistical review 
of 1,232 pornographic and 6,967 non-pornographic webpages reveals that 72% of pornographic webpages have more 
than 5 images and 60% of them have more than 10 images [16]. Also, 40% of pornographic webpages have more than 5 
links to image and video files. Hence, the ability to detect pornographic images is a useful tool towards filtering adult 
pages in the Internet. 
One should be aware that the exact definition of an erotic image differs in different countries and different culters. The 
exact definition of pornography is even undefined in less-conservative countries. For example, in UK there are seven 
acts of parliament concerning pornography [17], but in US, the Communications Decency Act was ruled 
unconstitutional in June 1997 and its successor, the Child Protection Act is subject to legal challenge. This subject is out 
of the scope of this paper and the interested reader is referred to [18,19, 20, 21]. As such, we agree with the authors in 
                                                 
 



[22] that "pornography is an ill-defined concept and that we use it loosely, to refer to unwanted material with a sexual 
content". 
Figure 1 shows the number of published scientific papers (either in conferences or journals) devoted to content-based 
pornography detection. The chart covers the period of 1996 to 2004, because the first known works were published in 
1996 (see Section 2-A). This figure depicts the motivation of scientific society to solve the problem of unwanted 
exposure of pornography in the Internet. 
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Fig. 1 Number of scientific publications dedicated to content-based pornography filtering in the years of 1996 to 2004. 

 
A rapid review of the available content-based pornography detection approaches (see Section 2-A) reveals that they are 
all essentially based on detecting skin areas in the images. Also, a more careful review shows that the frequently applied 
methods for skin detection are pixel-based approaches using ordinary or Baysian look-up tables (LUT). 
According to the number of available color spaces and the diversity of the choices made in the literature, it is clear that 
a through investigation of the performance of different color spaces for this problem is mandatory. In this paper, we 
examine 21 color spaces in all their possible representations. The examination is aimed on evaluating different color 
modeling approaches in terms of their performance on skin detection in pornographic images. 
The following parts of the paper are organized as follows. Section 2 reviews the available pornography filtering 
(Section 2-A) and the relating skin detection (Section 2-B) literature. This review tends to answer two important 
questions. Firstly, it is focused on the importance of the skin detection stage in these approaches. Secondly, it enlists the 
skin detection techniques, utilized in this literature. Section 3 states the mathematics of pixel-based skin detection 
methods, and Section 4 describes the datasets used in this research. Section 5 holds the experimental results and finally 
Section VI concludes the paper. 
 
2 Literature Review 
 
A. Content-Based Pornography Filtering 
The first work on classifying nude pictures belongs to Forsyth et. al. [23, 24, 25]. In that approach, firstly, the images 
containing large areas of skin are detected (using the IRgBy color space) and then using a specially defined human 
structure [26, 27], the images containing human figures are recognized as the nude ones. In their approach, only the 
images which are at least covered in one third by the skin area are fed to a geometric analyzer. While all the images 
used in [23, 24, 25] are 128×192, it takes about six minutes for the method to process a single image. Though, the final 
recall of the method is less than 50%. 
After that, other researchers made new contributions in this field. In [28], the researchers utilized skin detection in the 
RGB color space equipped with wavelets and central moments on 128×128 images to develop the WIPETM system. 
In [22, 29, 30], the researchers combined the results of a simple skin area estimator based on a skin detection filter with 
textual analysis results. That paper reports that "while a threshold is selected, the choice of the color space is not 
critical. This is somewhat surprising because other authors advocate the use of IRgBy". That work was extended in [31] 
using a specific neural network to raise the recall rate up to 90%. The researchers draw the final conclusion that 
"provided that enough training data and a histogram-based representation of the color distribution are used, then the 
choice of color space is not critical" [31]. 
In [32], the authors describe the steps towards developing an adult image detection scheme using the skin color in the 
YUV, YIQ, and their polar representations (YUV°, YIQ°). In that approach, a Sobel edge detector and a Gabor filter 
judged the results of the skin detector. In [33] the researchers used the CIE-Lab color space for detecting the skin areas 
in the images. The results were then analyzed using some geometrical features. 
In [34], the researchers computed some shape descriptors using the results of skin tone detection in the YCbCr and 
IRgBy (25) color spaces. Then, using an Adaboost learning scheme, the erotic images were classified. In [35], the 
researchers combined the results of a neural network classifier working on image features with a commercial text-



filtering tool developed by SurfWatch (used by Altavista). The image feature used in that work only related to the 
portion of pixels identified to be skin (in the  RGB color space), with no further geometric processing. 
The skin detector in [36] was used in [37, 38] to develop a MPEG7-based adult image identification system, using 
query-based search into an erotic dataset. In the approach described in [39] the results of a skin detector in the RGB and 
HSV color spaces were used to produce other features like a simple texture descriptor. Then, all of the features were fed 
to a state vector machine (SVM). In [40], the researchers used the results of a straight skin-detection rule (R > G or R > 
B) with a SVM classifier. In [41, 42] the researchers gave general cues for developing a web-filtering tool. 
In [43], a Gaussian mixture model was equipped with Baysian inference to utilize the skin detection stage. Then, the 
results were fed to a SVM. In [44], the researchers utilized genetic algorithm for locating the loci of nude pictures in a 
search space containing huge 801-D feature vectors. Each feature vector contained color histograms in the Cb and Cr 
color components plus some shape descriptors. Alongside using the histograms of color components in the feature 
vector, the method in [44] devised hard thresholds on the Cb and Cr components to extract the skin-like objects 
(78<Cb<135, 85<Cr<185). In [45, 46], the researchers used the results of a skin detector in the RGB color space for a 
multi-layer perceptron classifier. In the extended works they applied a better skin detection filter developed in [36] (see 
also [47, 48, 49, 50]). In [51] researchers utilized a custom non-linear color space. In [52] a multi-Baysian skin detector 
was utilized. The information about the available pornography filtering approaches are listed in Table 1.  
 
B. Skin Detection 
From the review in Section 2-A, it is clear that it is generally accepted that the first step towards finding the whole 
human body (or its parts) is to find those parts of the image holding pixels corresponding to the skin material. This 
assumption is theoretically backed by models of the skin tissue. As such, it is argued that the skin color of human is 
created by a combination of blood (red) and melanin (yellow, brown) [53]. Most researchers presume from these 
evidence that the skin color can be recognized in an image with no explicit knowledge about the lighting conditions, the 
camera calibration, and the subject properties such as the race.  
A skin detection system consists of two major parts. First, there should be a proper model for representing colors; what 
we call the color space. Second, there is an inference methodology to obtain information from available skin samples 
and to extrapolate the results to the given samples. For the first part, Table 2 shows that the solution of different 
researchers seems to be more related to personal taste rather than experimental evidences [54]. We will discuss this 
point with more details in this paper.  
While there are plenty of methods for modeling and detecting skin tone, as Table 1 shows, in the pornography detection 
field, researchers tend to gather around two major choices. 

Table 1 Summary of the available pornography detection works. 
Work Used Color Space Skin Detection Approach 

[24, 25, 23] IRgBy Ordinary Look-Up Table 

[28] RGB Ordinary Look-Up Table 

[22, 29, 31, 30] RGB, HSV, IRgBy, Nrgb Baysian Look-Up Table 

[32] YUV, YIQ, YUV°,YIQ° Ordinary Look-Up Table 

[33] CIE-Lab Not Available 

[34] YCbCr, IRgBy Ordinary Look-Up Table 

[35] RGB Ordinary Look-Up Table 

[37, 38] RGB Histogram-Based 

[39] RGB,HSV Ordinary Look-Up Table 

[40] 
RGB,HSV,IRgBy, 

NRGB,YCbCr
Ordinary Look-Up Table 

[43] RGB Baysian Look-Up Table 

[44] CbCr Ordinary Look-Up Table 

[45, 46, 47, 48, 

49, 50] 
RGB Ordinary Look-Up Table 

[51] Custom Baysian Look-Up Table 

[52] RGB, RGBr Baysian Look-Up Table 

 
Table 2 Diversity of color spaces utilized for skin detection. The color spaces are defined in Appendix A. 

Work Color Space 



[36, 55,56,57,58,59,60,61,29,62,63,64,30,31,22,52] RGB 

[61,65,66,67,68,69,70,71,72,73,74,75,76,77,29,31,

78,79, 80,40,81,82,83,30,22] 

HSI, HSV, HSIc, HSVc, 

HLS 

[84,81,85,86] CIE-XYZ 

[68,69,70,79,87,88,89,90,91,92,93,61,40,78,94,95,

96,97, 80,98] 
YCbCr 

[68,69,70,79,99,100,98,78, 101,81,33] CIE-Lab 

[102,103,61,56,104,32,78, 

105,32,106,81,107,108,109] 
YIQ, YIQ°,YUV, YUV° 

[98,68,69,70,79,99,100,78,98,81] CIE-Luv 

[25,24,26,27,23,40,68,79,31,29,22,30] IRgBY, IRgBY
+

[110,111,112,113,114,115, 

116,117,118,119,120,98,121,122,40,77,123,124,61,

68,79,81,82,125,31,29,22,30] 

Nrgb 

[56,126,78,97,52] RGBr

[81,77,97] TSL 

[127] Others 

 
From the 26 available approaches for pornography detection, 16 use ordinary LUT, 7 use Baysian LUT, and only 3 
utilize a different approach for skin detection. Hence, here we focus on the two methods for LUT-based skin detection 
process. As such, the concentration of this paper is on the best choices for representing color vectors.  
Few works are available that compare the performance of different color spaces for skin detection [128, 129, 78, 97, 79, 
68, 81, 56, 130], but they are all concerned with face detection approach. As mentioned in [131] "pixel-based skin 
detection has long history, but surprisingly few papers that provide surveys ... were published". for a survey of the 
available color space comparison works see [131]. We argue that as the conditions for pornography filtering are 
essentially different from other skin-related fields that allow more-or-less constraints on the imaging conditions, a more 
precise and focused investigation in this field is needed.  
The contributions of this paper are in three ways. Firstly, here we use all our samples and training data from available 
pornography resources. Doing as such, we concentrate on fining the best choice of color space for pornography 
detection purposes. As such, this research is dedicated to detecting skin tone in pornography images taken in absolutely 
arbitrary conditions. Secondly, we arrange the largest number of color spaces than can be used in an evaluation. While 
the available works compare less than 10 color spaces with each other, we gather 21 color spaces in a unique 
experiment. The third contribution of this work is that we make no preasumptions about the best dimension of color 
spaces. All available works use the original 3-D color spaces, or cut them into 2-D representations by neglecting the 
component assumed to be related to the illumination. In contrast, we perform all the experiments on each color space in 
all its possible 3-, 2-, and 1-D representations. Also, more than computing the performance of different color models for 
the training and test data, we perform a real skin detection task for a large erotic dataset and evaluate different color 
spaces in terms of their corresponding results.  
 
3 Proposed Method 
Assume that we are working in the general color space c1c2c3. Also, assume that c1, c2, and c3 are linearly scaled and 
biased to give values in the interval [0, 255] (8-bit representation). The pixel-based skin detection approach presumes 
that there exists a function P: [0, 255]3 [0,1] for which, P(c) shows the probability of c belonging to a skin-related 
area. The function P is also called the skin probability map (SPM) [56, 78]. Generally, P is cut by a fixed threshold to 
obtain a binary LUT.  
There are two general approaches for finding P, ordinary look-up table (OLUT) and Baysian look-up table (BLUT). 
Section 3-A presents the color spaces included in this investigation, and Section 3-B and  3-C discuss the two methods 
for computing P. Finally, Section 3-D proposed a method for detecting the skin map using a proper LUT.  
Note that some researchers try to code the LUTs using some simple geometric rules [23,72]. For example, rectangles 
[132], set of planes [133], and ellipses [134] are being used. We emphasize that those approaches are simplified 
versions of the general LUT-based skin detection process discussed here. As, for explaining the skin-tone locus by a set 
of geometric rules in the color domain, one first should prove that such locus exists.  
 
A. Color Spaces 
In this work, we use the 21 color spaces of the RGB, HMMD (as the 3-D space HMM) [135], HSI [136], HSV [137], 



I1I2I3 [138], CIE-XYZ [139], CIE-Luv [139], CIE-Lab [139], CIE-LHC [139], YCbCr [140], YIQ [141], YUV [142], 
IRgBy [143], IRgBy+ [143], Nrgb [122], YUV° [32], YIQ° [32], YCbCr° [32], HSIc [77], HSVc [77], RGBr [126], and 
TSL [81]. To make the range of different color spaces comparable, they are all normalized to the [0, ,255] interval. 
See Appendix A for the formulation of different color spaces and the normalization scheme.  
An arbitrary color space x1x2x3 may be seen in 7 representation of x1x2x3, x1x2, x2x3, x3x1, x1, x2, and x3. As such, 
we examine all possible representations of each single color space. Here, we add the name of the color space before its 
components (when necessary) to avoid mistakes. For example, the I component in YIQ is called YIQ.I, while the I 
component in IRgBy is called IRgBy.I. When this is unnecessary, the original names are used, for example I3 in I1I2I3 
is easily addressed as I3. See Appendix A for a detailed table.  
 
B. Ordinary Look-Up Table (OLUT) 
The ordinary LUT-based skin detection approach assumes that the SPM can be estimated from a proper training set. 
This approach is quite commonly used in the literature (e.g., see [144, 100, 65, 68, 69, 70, 79, 67, 145, 35, 44, 34, 32, 
48, 49, 50, 45, 46, 47, 39, 28, 24, 25, 23]).  
Here, we investigate the validity of this assumption. Assume that we have two sets of 3-D vectors, relating to skin and 
non-skin (control) areas, respectively. Also, assume that there are Ns pixels deliberately extracted from skin area and Nc 
pixels which do not represent skin. Both Ns and Nc should be large enough. In our case, we have Ns=278530 and 
Nc=192514. Now, assume that Hs denotes the p-D histogram of all skin samples in an arbitrary color space (p=1, 2, 3) 
(Hc is computed for the control dataset in a similar way). By setting different values of p we are able to remove one or 
two of the components of a color space. For computational purposes we select the number of bins in each direction 
equal to 16, 64, and 256 for 3-, 2-, and 1-D representations, respectively.  
The main assumption behind the validity of OLUT-based skin-detection is that Hs can serve as P, the SPM. As such, for 
an arbitrary threshold value  , all color vectors c that satisfy P(c)     are regarded as skin samples. Due to the fact that 
the summation of all elements of Hs equal unity, the elements of Hs may be too small. Thus, setting P(c)=Hs(c) will 
result in difficulties in selecting  . To make the range of feasible values of   more appropriate, we compute P as:  

 
(1)

Consequently,   can accept all values in the range of [0, 1] [68].  
For an arbitrary value of  , the OLUT is a binary array with a size similar to Hs and Hc. Zero element in the c bin 
means that c does not represent skin tone, while unity indicates skin. Then, the true positive (TP) and false positive (FP) 
values are computed as: 

 
(2)

 
(3)

Clearly, we expect a value of   resulting in a TP of around unity and a FP of around zero. Note that FP and TP are 
always between zero and unity.  
For an arbitrary color space and a value of p, by selecting different values of   in the [0, 1] interval, we compute a set of 
corresponding (TP,FP) pairs. When these pairs are drawn in an axis, we reach to the receiver operator characteristics 
(ROC) curve. This curve is a keen way to determine an appropriate value of  .  
 
C. Baysian Look-Up Table (BLUT) 
Assume that a color vector c is given. Note that, what we actually need is p(skin c). From the Bayes theory we know 
that 

 
(4)

where p(skin) and p(  skin) are a priori probabilities, which are absolutely unknown. Here, p(skin) and p(  skin) are the 
probabilities that an arbitrary pixel represents skin and non-skin tones, respectively. Now, we write down the Bayes 
equality for p( skin c) as: 



 
(5)

Note that 

 (6)

as trivially expected.  
Using (4) and (5) we have 

 
(7)

Here, we define two notations 

 
(8)

 
(9)

Note that according to (7), we have 

 
(10)

Using the normalization scheme used in (1), we have 

 
(11)

which eliminates the two unknown probabilities of p(skin) and p(~skin). In fact, p-(c) is computed using two proper 
datasets of skin and non-skin, and (11) enables us to use it for creating a BLUT. From this point, everything is just 
similar to what performed in the OLUT-based skin detection process, described in Section 3-B. This approach is used in 
[22, 29, 31].  
 
D. Skin Map Computation 
Assume that we have the p-D color space X in which H is presumed to be a proper LUT for skin detection. Assume that 
H is a bp-bin histogram. For the given image I, the process of finding its corresponding SPM is straightforward: 
compute J, the representation of I in X. Then, for each single pixel c, compute the corresponding bin in H. Now, c 
represents skin iff the corresponding bin in H holds unity. This process results in the binary image M (M and I are in the 
same size). For the sake of simplicity, we propose another version of this scenario. For 0 <   < 1, first compute Il as the 
resized version of I with ratio   ( =10% is a proper choice). Then, compute the SPM for I  as described above. Lets 
call the SPM of Il as Ml. Now, up-sample Ml, with ratio 1/ , to reach to M (which is the same size as I). According to 
the performance of MATLAB in processing arrays, and its deficiency in working with "for" loops, the above scheme 
gives considerably higher speed (about 4 times). The choice of the upsampling method depends on the expected quality 
of results; for fast evaluation the nearest neighborhood is a proper choice while bi-linear gives smoother results in cost 
of higher computational complexity.  
 
4 Datasets 
Using the Google advanced image search with enabled "large size" option and some erotic keywords, 2284 
pornographic images were downloaded. Some of the images came from amateur weblogs devoted to pornography. All 
images are in color, represented in the RGB color space and compressed using the standard JPEG compression with 
high visual qualities. After downloading the images from the net, no preprocessing is performed on them. These images 
formed a dataset of erotic images. Both indoor and outdoor images of single and multiple people with both complex and 
simple backgrounds are collected in the dataset. It includes photographs of female Hollywood stars, professional 
photographs of erotic models, amateur pornographic images, and pictures taken in the beach.  
When considering the web-pages containing pornographic content, two major categories are recognized. The first one is 
the group of professional agencies producing and distributing erotic content. These homepages are mostly restricted to 
members and comply with regarding laws. As described in [146] the main challenge of content-based pornographic 



image blocking is to put constraints on accidental access to adult content in the Internet. As such, no one may restrict 
adult motivated users from viewing pornographic content (that comply with the specialized laws) [147]. Hence, the 
scope of this research does not include these professional sources of pornography. The second place to find adult 
images in the web, and the dominant one, is the category of homepages produced by amateurs, even teenagers. As the 
main challenge of the current research is to restrain these sources, all of the images in the erotic dataset are selected 
from free resources in the Internet. Note that while some of the images accompany copyright hints of professional 
agencies, they have been pirated and incorporated into free resources, and thus are added to the dataset.  
The pornographic images in free homepages are separated into three major categories. Firstly, there are images that are 
transferred to the web directly from a digital camera. These images contain no further manipulations. Then, there come 
images that only contain a tag, indicating the source of the image. From the nature of the tags, it is clear that they are 
added using one of the free batch image editing softwares available in the Internet. The last, and the least frequent, 
category is the few images containing professional manipulations. These images are those pirated from professional 
agencies. Figure 2-a shows the share of each category in the erotic dataset. As seen here, almost all images in the erotic 
dataset are non-edited.  
Figure 2-b shows the histogram of the width and the height of the images in the erotic dataset. As seen here, each 
histogram contains a single peak. As such, the width of the images is averagely 605 with the standard deviation of 196. 
Also, the height of the images is averagely 676 with the standard deviation of 235. The peaks of the width and height 
histograms occur in 520 and 685, respectively.  
When it comes to the aspect ratio of the images, interesting features are found. For a H×W images, its corresponding 
aspect ratio is defined as min{H/W,W/H}. As such, we compensate for images captured horizontally, or vertically. 
Figure 2-c shows the histogram of the aspect ratios of the images in the erotic dataset. Hence, the aspect ratio of the 
images of the erotic dataset are mostly gathered about 2/3 and 3/4. As an example, in a digital Canon A60 camera, the 
available resolutions are 1600×1200, 1024×768, 640×480, corresponding. These figures all lead to the aspect ratio of 
3/4. This fact, empowers the assumption that the free pornographic images in the Internet are just copied from the 
camera and distributed without any further manipulations.  
Another interesting feature of the collected erotic dataset is the compression ratio of the images. Firstly, it should be 
emphasized that except for the static and animated banners presented in the erotic resources, the dominant file format in 
this area is the standard JPEG. As Fig. 2-d shows, the images in the erotic dataset are represented averagely by 1.45 bits 
per pixel with the standard deviation of 0.8 bits per pixel. Also, the peak of the histogram happens at 1.2 bits per pixel.  
Figure 2-e illustrates the number of people present in the images of the erotic dataset. Hence, most of the images in the 
dataset include a single model. Figure 2-f classifies the images into two groups in terms of the existence of at least one 
face in the images. This categorization is performed to see if face detection may help localizing naked people [43, 33]. 
Less than one fourth of the erotic images in the dataset contain no faces. This fact implies that using a face detection 
method may be beneficial.  
Figure 2-g shows the separation of the images in the erotic dataset according to the sexual organs present in them. This 
figure shows that about half of the erotic images do not contain any such organs.  
Another categorization of the erotic image dataset comes in Fig. 2-h. This chart shows that about 89% of the images in 
the erotic dataset are indoor images compared to the minority of 11% outdoor ones.  
The skin area of some of the images of the erotic dataset are cropped manually. The cropped images are then resized to 
64×64 pixels. As such, a new training dataset of 314 samples is generated, which is called the skin dataset. Another 
dataset of 106 patches, each containing pixels corresponding to a single material is also produced. The patches are 
selected manually from images taken by a Canon A60 digital camera at daylight with flash. This dataset is used as the 
control data. Figures 3 and 4 show the skin and control dataset, respectively. We emphasize the vast variety of colors 
related to skin swatches. Some colleagues of us were hardly believing some of the patches shown in Fig. 3 to represent 
real skin samples. We believe that the main challenge for a proper skin detector is to adopt to all these skin samples, and 
yet reject non-skin tones. This is mainly caused by the practical situation in which a pornography-related skin detector 
should work; unconditional images just found somewhere in the Internet. 
 
5 Experimental Results 
The experimental results are carried out in a 2046 MB PIV processor using MATLAB 6.5 and image processing 
toolbox 3.2.  
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Fig. 2 Statistics of images in our erotic dataset. a) Classification of images into three categories of not manipulated, tagged, and 
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people present in images. f) Is there a face in the image? g) Separation of images according to visible sexual organs. h) 
Categorization in terms of being outdoor or indoor. 

 
The ROC curves of the OLUT-based skin detector for the 21 color spaces under examination (see Appendix B) reveal 
several interesting features about the color spaces and their performance in OLUT-based skin detection processes. 
Firstly, selecting those color spaces resulting in points in the ROC, satisfying TP > 90% and FP < 10%, results only in 
the RGB, HMMD, I1I2I3, I2I3, HSI, HSV, HSV.HS, VH, CbCr, YCbCr, IQ, YUV.UV, CIE-Luv, CIE-uv, Nbr, UV°, 
IQ°, CbCr°, HSVc, HSc, TSL, TS. Thus, out of 21*7=147 investigated color spaces, only 22 has shown preliminary 
acceptable results. As such, if a color space is selected by chance, there is only 15% hope that it will be helpful for 
OLUT-based skin detection purposes. This fact proves that the ongoing investigation is worthy.  
 



 
Fig. 3 Samples of skin dataset. 

 

 
Fig. 4 Samples of control dataset. 

 
Another interesting outcome of the described experiment is the evaluation of the color spaces produced by altering 
elderly ones. There are six pairs of corresponding color spaces in this experiment. Namely, the (HSI,HSIc), (HSV, 
HSVc), (YCbCr,YCbCr°), (YIQ,YIQ°), (YUV,YUV°), and (IRgBy,IRgBy+). Figure 5 compares the best achievements 
of the color spaces in each pair. These are the (HSI,HSIc), (HSV, HSVc), (CbCr,CbCr°), (IQ,IQ°), (YUV.UV,UV°), 
and (RgBy,RgBy+). It is clear that none of the manipulated color spaces outperform their regarding ancestors. In fact, 
the alterations in the structure of more classic color spaces have declined their performances.  
An important result of this experiment is that in the YUV, YIQ, and YcbCr color spaces, removing the illumination-
related component (Y) increases the performance of skin detection process. Thus, the definition of the illumination 
component in these three color spaces is a good step toward getting invariant to illumination. 
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Fig. 5 Comparison of original color spaces with their manipulated versions in terms results of the best combination for LUT-based 
skin detection processes. 

 
Figure 6 illustrates the best ROC curves obtained from the color spaces in this experiment. We believe that the 
difference between the performance of these color spaces is not really meaningful. Figure 7 shows the corresponding 
LUTs obtained in this experiment. 
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Fig. 6 Best ROC curves for OLUT-based skin detection obtained frominvestigated color spaces. 
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Fig. 7 Best LUTs produced by color spaces under investigation. 

Table 3 lists the resulting true and false positives. We emphasize that further comparison of these LUTs should be based 
on a larger dataset. Note that as the computation of the LUTs is performed using higher number of bins, there are some 
TP values less than the preselected margin of 90%. Here, we have used 32 and 256 bins for 3- and 2-D histograms, 
respectively, to acquire a more precise OLUT.  
Selecting those color spaces capable of giving a BLUT satisfying TP > 90% and FP < 20%, simultaneously, results in 
CIE-a, CIE-u, Min, HSI.H, Rg, Rg+, Cr, Cr°, YIQ.I, Q°, YUV.V, and V° (see Appendix B). Note that here we have 
doubled the margin for FP; as the ROC curves tend to fall in Baysian framework, compared to the OLUT-based one. 
Also, note that the ROC in CIE-a is visibly outperforming others, even touching the FP < 10% margin. Note that 
selecting a color space by chance, there is only a 0.6% chance that it will yield proper BLUT-based skin detection 
results. Another interesting result of this experiment is that the best color spaces in the Baysian framework are 1-D 
ones, compared to the case of OLUT-based skin detection in which the best 11 color spaces constitute eight 3-D, and 
three 2-D spaces and no 1-D color space.  

Table 3: False and true positive results of the best LUTs produced by color spaces under investigation. 
Color Space True Positive False Positive 

RGB 91% 5.9% 

HMMD 90% 6% 

I1I2I3 91% 6.3% 

HSI 85% 5% 

HSV 93% 5.8% 

CbCr 89% 7.9% 

IQ 76% 3.1% 

YUV.UV 90% 8.5% 

CIE-Luv 91% 7.2% 

Nbr 86% 8.7% 

TSL 91% 6.4% 
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Fig. 8 Results of computing the skin map using the best available LUTs. 

 
Figure 9 compares the best achievements of the color spaces for BLUT-based skin detection in each pair of original and 
manipulated color spaces. There are six pairs of corresponding color spaces in this experiment. Namely, the (HSI,HSIc), 
(HSV,HSVc), (YCbCr,YCbCr°), (YIQ,YIQ°), (YUV,YUV°), and (IRgBy,IRgBy+). The corresponding pairs of the best 
combinations are (HSI.H,Hc), (HSV.S, Hc), (Cr,Cr°), (YIQ.I,Q°), (YUV.V,UV°), and (Rg,Rg+). As visible in Fig. 9, 
the HSIc performs weaker compared to the HSI. In contrast, the HSVc is far more better than the HSV. The YCbCr°, 
YIQ°, and YUV° does not have anything to offer compared to their respective ancestors. The IRgRy and IRgRy+ are 
giving completely the same ROC curves.  
Figure 10 compares the ROC curves of the best color spaces for BLUT-based skin detection process.  
The images in the erotic dataset are processed using the computed BLUTs. Then, the results are separated into the four 
groups of perfect, partial, excessive, and irrelevant. Figure 12 shows the obtained results. It is clearly visible that the V° 
and Cr° are dominantly outperforming the others. Comparing Fig. 12 with Fig. 8 reveals that utilizing the Baysian 
approach results in a higher rate of correct classification, while it also increases the possibility of irrelevant vectors to be 
classified as skin. We argue that this occurs when both the nominator (P(skin|c)) and denominator (P(~skin|c)) of the 
fraction p+(c) get zero, resulting in an non-meaningful value. This fault may be resolved using a better control dataset 
(which includes more non-skin samples). 
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Fig. 10 Best ROC curves for BLUT skin detector obtained from investigated color spaces. 
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Fig. 9 Comparison of original color spaces with their manipulated versions in terms the results of the best combination for BLUT-
based skin detection process. 
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Fig. 11 Best BLUTs produced by color spaces under investigation. 
 
 
 
 
 
 
 
 
 
 
 



 
Table 4 False and true positive results of the best BLUTs produced by color spaces under investigation. 

Color Space True Positive False Positive 

Min 85% 13% 

HSI.H 85% 13% 

Cr 22% 93% 

CIE-a 92% 14% 

YIQ.I 83% 18% 

YUV.V 89% 18% 

CIE-u 57% 11% 

Rg 78% 16% 

Rg
+ 74% 13% 

V° 92% 28% 

Q° 92% 28% 

Cr
° 95% 32% 

 
Figure 11 shows the best BLUTs produced by the color spaces under investigation. Table 4 lists the resulting true and 
false positives. We again emphasize that further comparison of these BLUTs should be based on a larger dataset. Note 
that as the computation of the BLUTs is performed using higher number of bins, there are some TP values less than the 
preselected margin of 90%. Here, we have used 32 and 256 bins for 3- and 2-D histograms, respectively, to acquire a 
more precise BLUT. Note that the general results of BLUT-based skin detection are worse than those of OLUT-based 
skin detection in the training set.  
 
6 Conclusion 
In this paper, the 21 existing color spaces are examined for pixel-based skin detection purposes. Each color space is 
considered in all its seven possible representations. The examination includes measuring the best performance for 
classifying the skin pixels in the training dataset plus the real performance in highlighting skin areas in the samples of a 
large pornographic dataset. Two approaches of ordinary and Baysian LUT-based skin detection are evaluated. The 
results shows that the Nbr is the best choice for ordinary LUT-based skin detection. Also, it was observed that the best 
solutions for Baysian LUT-based skin detection are 1-D color spaces of V° and Cr°. Utilizing the Baysian approach is 
proved to result in higher rate of correct classification, while it also acceptably increases the possibility false positive 
classification. 
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Fig. 12 Results of computing the skin map using the best available BLUTs. 
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Appendix 
A. Color Spaces 
The 21 existing color spaces are defined below. 

(12)

(13)

(14)

 

(15)

(16)

(17)

(18)

where, X, Y, and Z in (17) and (18) are defined in (16). Also, X0=Y0=Z0=255. 

 
(19)

where, Y comes from (16), Y0=255, and a and b come from (18). In fact, CIE-LHC is the polar version of CIE-Lab 
[139]. The function f in (17), (18), and (19) is defined as [139]: 

(20)



(21)

(22)

(23)

(24)

(25)

where, n is a uniform random variable in [0, 1].  

 

(26)

which is essentially a 2-D color space.  

(27)

which is the polar version of YCbCr, with Cb and Cr coming from (21).  

(28)

which is the polar version of YIQ, with I and Q coming from (22).  

(29)

which is the polar version of YUV, with U and V coming from (23).  
After these three polar color spaces, there are two cartesian color spaces, namely HSIc and HSVc, defined as: 

 

(30)



where, H and S come from (13). Also, we have, 

 
(31)

where, H and S come from (14). 
The ratio RGB is defined as: 

 

(32)

which is a 2-D color space. Finally, Tint-Saturation-Lightness (TSL) color space is defined as: 

(33)

where r and g come from (26). 
Almost all color spaces are (mostly, one-to-one) functions F: (        )3  R3. For convenient we call the set 
(        )3 as  . In order to make the representation of different color spaces comparable, we perform a linear 
normalization scheme. As such, for each color space F=[F1,F2,F3]T (Fi:   R), the normalized color space

~
F is 

defined as: 

 

(34)

where, iα and iβ are constant real values and [x] denotes the integer value of x. The constants iα and iβ are selected in 
the way that 

~
F turns into a     function, which is applicable for digital 8-bit processing. Table 5 lists the values of 

iα and iβ for the color spaces stated above. It is clear that for a color component F we have 

(35)

(36)

In some cases that computing the global maximum and minimum values of a single color component was not 
practically possible, a fair approximation is used.  
Table 6 lists the names of different color spaces used in this paper.  
 
B. ROC Curves 
Figures 13 and 14 show the ROC curves of the OLUT and BLUT-based skin detectors in the color spaces under 
examination, respectively. 
 

Table 5 Normalization factors for color spaces under investigation. 
Color Space  1  2  3  1  2  3



RGB 1 1 1 0 0 0 

HMMD 255/  1 1 0 0 0 

I1I2I3 1 1 1 255/2 255/2 0 

HSI 255/  255 1 0 0 0 

CIE-XYZ 0.84 1 1 0 0 0 

HSV 255/(2 ) 255 1 0 0 0 

YcbCr 1 0.56 0.71 0 255/2 255/2 

CIE-Lab 265.8 147.9 147.9  40.8 255/2 255/2 

YIQ 1 0.83 0.96 0 255/2 255/2 

CIE-LHC 2.55  255/  255/ 2  40.8 255/2 0 

YUV 1 1.14 0.81 0 255/2 255/2 

CIE-Luv 2.55 0.58 0.78  40.8 94 140 

IrgBy 1 0.5 0.5 0 255/2 255/2 

IRgBy
+ 1 0.5 0.5 0 255/2 255/2 

Nrgb 255 255 255 0 0 0 

YUV° 1 1.32 255/(2 ) 0 0 255/2 

YIQ° 1 1.26 255/(2 ) 0 0 255/2 

YCbCr° 1 0.88 255/(2 ) 0 0 255/2 

HSIc 1 255/2 255/2 0 255/2 255/2 

HSVc 1 255/2 255/2 0 255/2 255/2 

RGBr1 1 1 1 0 0 0 

TSL 2×255/3 255 5/ 8 1 255/6 0 0 
1 The range of this color space spans [0,  ]. Hence no linear normalization works on it. 
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Fig. 13 ROC curves of the OLUT-based skin detector. 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FP

T
P

RGB

RGB
RG
GB
BR
R
G
B

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FP

T
P

HMMD

HMMD
MinMax
MinH
HMax
Min
Max
HMMD.H

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FP

T
P

I
1
I
2
I
3

I
1
I
2
I
3

I
1
I
2

I
2
I
3

I
3
I
1

I
1
I
2
I
3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FP

T
P

HSI

HSI
HSI.HS
SI
IH
HSI.H
HSI.S
HSI.I

RGB HMMD I1I2I3 HSI 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FP

T
P

CIE−XYZ

CIE−XYZ
CIE−XY
CIE−YZ
CIE−ZX
CIE−X
CIE−Y
CIE−Z

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FP

T
P

HSV

HSV
HSV.HS
SV
VH
HSV.H
HSV.S
HSV.V

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FP

T
P

YC
b
C

r

YC
b
C

r
YC

b
C

b
C

r
C

r
Y

YC
b
C

r
.Y

C
b

C
r

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FP

T
P

CIE−Lab

CIE−Lab
CIE−La
CIE−ab
CIE−bL
CIE−L
CIE−a
CIE−b

CIE-XYZ HSV YCbCr CIE-Lab 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FP

T
P

YIQ

YIQ
YIQ.YI
IQ
QY
YIQ.Y
YIQ.I
Q

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FP

T
P

CIE−LHC

CIE−LHC
CIE−LH
CIE−HC
CIE−CL
CIE−L
CIE−H
CIE−C

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FP

T
P

YUV

YUV
YU
YUV.UV
VY
YUV.Y
YUV.U
YUV.V

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FP

T
P

CIE−Luv

CIE−Luv
CIE−Lu
CIE−uv
CIE−vL
CIE−L
CIE−u
CIE−v

YIQ CIE-LHC YUV CIE-Luv 



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FP

T
P

IR
g
B

y

IR
g
B

y
IR

g
R

g
B

y
B

y
I

IR
g
B

y
.I

R
g

B
y

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FP

T
P

IR
g
B

y
+

IR
g
B

y
+

IR
g
+

R
g
B

y
+

B
y
I+

I+

R
g
+

B
y
+

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FP

T
P

Nrgb

Nrgb
Nrg
Ngb
Nbr
Nr
Ng
Nb

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FP

T
P

YUV°

YUV°

YU°

UV°

VY°

YUV°.Y

U°

V°

IRgBy IRgBy+ Nrgb YUV° 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FP

T
P

YIQ°

YIQ°

YI°

IQ°

QY°

YIQ°.Y

YIQ°.I

Q°

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FP

T
P

YC
b
C

r
°

YC
b
C

r
°

YC
b
°

C
b
C

r
°

C
r
Y°

YC
b
C

r
°.Y

C
b
°

C
r
°

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FP

T
P

HSIc

HSIc

HSc

SIc

IHc

HSIc.H
HSIc.S
HSIc.I

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FP

T
P

HSVc

HSVc

HSc

SVc

VHc

HSVc.H
HSVc.S
HSVc.V

YIQ° YCbCr° HSIc HSVc 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FP

T
P

RGBr

RGBr

RGr

GBr

BRr

Rr

Gr

Br

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FP

T
P

TSL

TSL
TS
SL
LT
T
TSL.S
L

 

 RGBr TSL  
Fig. 14 ROC curves of the BLUT-based skin detection. 

 
 

Table 6 Naming convention of color spaces and their representations. 
Color Space x1x2 x2x3 x3x1 x1 x2 x3

HMMD MinMax MinH HMax Min Max HMMD.H 

I1I2I3 I1I2 I2I3 I3I1 I1 I2 I3

HSI HS SI IH HSI.H HSI.S HSI.I 

CIE-XYZ CIE-XY CIE-YZ CIE-ZX CIE-X CIE-Y CIE-Z 

HSV HS SV VH HSV.H HSV.S HSV.V 

YCbCr YCb CbCr CrY YCbCr.Y Cb Cr

CIE-Lab CIE-La CIE-ab CIE-bL CIE-L CIE-a CIE-b 

YIQ YIQ.YI IQ QY YIQ.Y YIQ.I Q 

CIE-LHC CIE-LH CIE-HC CIE-CL CIE-L CIE-H CIE-C 

YUV YU YUV.UV VY YUV.Y YUV.U YUV.V 

CIE-Luv CIE-Lu CIE-uv CIE-vL CIE-L CIE-u CIE-v 

IRgBy IRg RgBy ByI IRgBy.I Rg By

IRgBy
+ IRg
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+ By
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