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Abstract—A novel compression algorithm for fingerprint im-
ages is introduced. Usingwavelet packetsand lattice vector quan-
tization, a new vector quantization scheme based on an accurate
model for the distribution of the wavelet coefficients is presented.
The model is based on the generalized Gaussian distribution.

We also discuss a new method for determining thelargest radius
of the lattice used and itsscaling factor, for both uniform and piece-
wise-uniform pyramidal lattices. The proposed algorithms aim at
achieving the best rate-distortion function by adapting to the char-
acteristics of the subimages. In the proposed optimization algo-
rithm, no assumptions about the lattice parameters are made, and
no training and multi-quantizing are required. We also show that
the wedge region problem encountered with sharply distributed
random sources is resolved in the proposed algorithm.

The proposed algorithms adapt to variability in input images
and to specified bit rates. Compared to other available image
compression algorithms, the proposed algorithms result in higher
quality reconstructed images for identical bit rates.

Index Terms—Compression, fingerprints, generalized Gaussian
distribution, pyramid lattice vector quantization, wavelet packets.

I. INTRODUCTION

T HE fundamental goal of image compression is to obtain
the best possible quality, for a given storage or communi-

cation capacity. One of the main applications where compres-
sion is crucial is in fingerprint analysis for forensic applica-
tions. The increasing amount of fingerprints collected by law en-
forcement agencies has created an enormous problem in storage
and transmission. Fingerprints are digitized at a resolution of
500 pixels/inch with 256 grey-levels.1 Although there are many
image compression techniques currently available, there still ex-
ists a need to develop faster and more robust algorithms adapted
to fingerprints.

Manuscript received May 23, 1997; revised November 11, 1999. This work
was supported by Queensland University of Technology, King Fahd Univer-
sity, and the Australian Research Council. The associate editor coordinating the
review of this manuscript and approving it for publication was Dr. Christine
Podilchuk.

S. Kasaei is with Sharif University of Technology, Iran (e-mail:
skasaei@sharif.edu).

M. Deriche is with King Fahd University, KSA, on leave from the Signal
Processing Research Centre at Queensland University of Technology, Australia
(e-mail: m.deriche@qut.edu.au).

B. Boashash is with the Signal Processing Research Centre at Queensland
University of Technology, Australia.

Digital Object Identifier 10.1109/TIP.2002.802534

1Grey-level images have a morenatural appearance to human viewers than
do black/white images and allow a higher level of subjective discrimination by
fingerprint examiners (who make the final decision in identifying fingerprints).

One of the main difficulties in developing compression
algorithms for fingerprints resides in the need for preserving
the minutiae(ridges endings and bifurcations) which are sub-
sequently used in identification. To achieve high compression
ratios while retaining these fine details, wavelet packets are
considered in this work. To save on computation, transmission,
and storage costs, afixed decomposition structure, tailored to
fingerprint images, is designed.

To obtain high compression ratios, we follow the above trans-
formation with vector quantization. In this work, we chose to
uselattice vector quantization(LVQ) given its superior perfor-
mance over other types of vector quantizers; such as the LBG
[26].

To apply LVQ, one needs to determine thetruncation level
andscaling factorof the lattice. By truncation, the largest radius
of the lattice, , is chosen determining the codebook size,.
By scaling, the density of lattice points is changed to minimize
theexpected total distortion(ETD) caused by quantization. In
previous lattice-based compression algorithms, the lattice pa-
rameters are commonly predetermined, leading to nonoptimized
quantization schemes. In this paper, a new approach for esti-
mating these parameters is proposed. The proposed quantizers
aim at minimizing the quantization distortion by considering the
characteristics of each subimage data. The design is based on a
precisemodel for the distribution function of the wavelet coef-
ficients and results in a superior performance compared to other
available algorithms [2], [19], [29]–[32], [21], [24].

Since LVQ is a multidimensional generalization of uniform
quantization, it produces minimum distortion for inputs with
uniform distributions. In order to take advantage of the prop-
erties of LVQ and its fast implementation while considering the
i.i.d. nonuniform distribution of the wavelet coefficients, we use
a piecewise-uniform pyramid LVQ(PU-PLVQ) algorithm. The
proposed algorithm results in the quantization of most source
vectors without the need to project these on the lattice outer-
most shell, while properly maintaining a small codebook size.
It also resolves thewedgeregion problem caused by pyramidal
lattice point shells. The above represent some of the drawbacks
of the algorithm proposed by Barlaud [12]. The proposed algo-
rithm handles all types of lattices, not only the cubic lattices,
as opposed to the algorithms developed by Fischer [14], [35]
and Jeong [17]. Moreover, no training and multi-quantizing (to
determine the lattice parameters) are required, as opposed to
Powell’s algorithm [28].

The rest of the paper is organized as follows. The wavelet
transform and wavelet packets are briefly introduced in



Section II. Subband image coding, statistical properties of sub-
bands, and distribution of the wavelet coefficients for different
subbands are described in Section III. LVQ, lattice truncation
and scaling, and previous work on pyramid LVQ are presented
in Section IV. In Section V, the proposed PLVQ algorithms,
design of lattice parameters for different subbands, and the
lossless compression algorithms used for certain subimages are
presented. Experimental results are discussed in Section VI,
followed by a conclusion in Section VII.

II. BRIEF INTRODUCTION TO THEWAVELET TRANSFORM AND

WAVELET PACKETS

Fingerprint images can be seen as texture patterns of flow ori-
entations with sharp discontinuities. Given this particular nature
of fingerprint images and the need for retaining ridge fine de-
tails and their inter-relation, the wavelet decomposition is con-
sidered here. Some advantages of using the wavelet transform
include: providing a multiscale representation of a given image,
flexibility in time-frequency tiling, attractive properties in ex-
tracting features from nonstationary signals, good energy com-
paction property, ability to match human vision spectral proper-
ties, low computational load , possibility of using short
filters (while reducing the Gibbs ringing effects), absence of
block artifacts, and providing a sparser representation than the
discrete cosine transform (higher lossy compression gains at low
bit rates).

In addition to the above, wavelet packets provide a more flex-
ible decomposition by allowing decompositions at any node
of the decomposition tree. This can result in a structure that
matches the characteristics of specific data of interest. To ob-
tain the best decomposition structure, in theentropy-based best
basis selection(EBBBS) algorithm [4], a library of orthonormal
basis is designed providing a projection with the lowest infor-
mation cost. Using the Shannon entropy as the cost function,
for a given image (or family of images), a decomposition struc-
ture which results in the minimum entropy is obtained using the
EBBBS algorithm.

Extensive work on power spectral density estimates from nu-
merous fingerprints has shown that natural frequencies of ridges
in fingerprint images are in the portion of spectrum contained
roughly in the range of – (corresponding to the third
wavelet decomposition level). In this work, we opted to use the
fixed 73-Subband decomposition which we developed earlier
[22], as opposed to the FBI’s 64-Subband [2]. This structure was
chosen based on experiments carried on the distribution of ener-
gies over different subbands and their effect on the quality of the
reconstructed images and by analyzing the best trees obtained
for a variety of fingerprints, taking into account the spectral sen-
sitivities in the human vision system.2 Typical decomposition
structures, examined in this work, are depicted in Fig. 1.

As shown in Fig. 1, for the 73-Subband, we do not apply fur-
ther decomposition to the diagonal subimage of the first wavelet
level (1 ), as opposed to the 64-Subband. This is due to the low
energy content, low variance, and low effect of this subimage

2It is shown that the human vision is more sensitive to contrasts at low fre-
quencies while details at high resolution and diagonal directions are less visible
to human eye [3], [33].

(a) (b)

(c) (d)

Fig. 1. Five-level decomposition structures: (a) proposed 73-Subband; (b)
WSQ’s 64-subband; (c) EBBBS using Johnston-32D filter; and (d) EBBBS.

(1 ) on the reconstructed image. Note that, this also reduces the
computational load. Furthermore, given the importance of the
second wavelet level, we apply further decompositions at this
level. As a result, the 73-Subband is computationally less ex-
pensive than the 64-Subband while it outperforms the 64-Sub-
band as shown in Section VI. The 73-Subband decomposition is
prefixedand is found to provide comparable results to those ob-
tained using the EBBBS method, which requires an extremely
high computational power (see Section VI).

III. SUBBAND IMAGE CODING

Data compression is the process of reducing the amount of
bit rate required to represent a given set of data. Compression
can be applied using lossless and/or lossy techniques. In lossless
compression, there is no loss of information and data is totally
preserved, however the coding gain can not be very high. On the
other hand, in lossy compression, part of information is lost but
a higher coding gain can be achieved.

After transforming the data, one needs to decide on the quan-
tization scheme to be used. One way to improve quantization
performance is to adjust the quantizer to the characteristics of
different subbands in the case of subband coding. To do so, the
quantizer should be tailored to theprobability density functions
(PDF) of the each of the subbands. Consequently, in order to
have an efficient compression algorithm, we firstly need to in-
vestigate the statistical properties of the different subbands.

A. Statistical Properties of Subbands

Table I displays the results obtained from the statistical anal-
ysis of different subimages of a typical fingerprint image. The
table shows the statistics of the wavelet packet coefficients for
different orientations (subbands). For each orientation, it gives
the minima, maxima, mean (), standard deviation (), and the
mean-removed normalized values of the minima and maxima.
Here, the Johnston-32D filter [18] is used.



TABLE I
STATISTICS OFWAVELET PACKET COEFFICIENTS FORDIFFERENTSUBBANDS,

FOR A MEAN-REMOVED FINGERPRINTIMAGE [LD: LEVEL-DIRECTION,
�: MEAN, �: STANDARD DEVIATION, d: DIAGONAL, v: VERTICAL, h:

HORIZONTAL, AND `: LOWPASSED]

From Table I, we notice the following:

• the range of the coefficients (Max–Min) and their vari-
ances grow as the resolution becomes coarser (which
shows the importance of higher level subimages);

• after obtaining the standardized subimages, the range for
the resulting coefficients becomes smaller and comparable
in all orientations at each level (which enables us to quan-
tize different subbands with similar schemes).

Based on the above observations and extensive experiments on
a variety of fingerprint images, we chose to use

• lossless predictive coding for the 4and 4 subbands;
• lossy zero-memory compression algorithms for remaining

subbands.

B. Shape of Distribution

The shape of the distribution of the wavelet coefficients
for each subimage is important in order to understand the
behavior of the coefficients and properly characterize these at
different resolutions. In [1], [13], it was shown that the PDF
of the wavelet coefficients can be closely approximated by the
generalized Gaussian distribution(GGD). This GGD law is
defined as:

(1)

where is ashapeparameter describing the exponential rate
of decay, is the standard deviation of the subimage at res-
olution level and direction , and is the usual Gamma
function. The GGD with coincides with the Lapla-
cian PDF while, for it becomes a Gaussian PDF. To
match the real PDF, is usually computed using the test.
As the test is computationally expensive, we developed here

(a) (b)

Fig. 2. (a) Empirical cumulative distribution function of a subimage (with
rounded and discarded data) and (b) histogram of the subimage and its model.

a nonlinear regression procedure for estimating the parameter
using

mean deviation
standard deviation

(2)

In our previous work [10], [24], we modeled the wavelet co-
efficients, with discarded zero elements, using the generalized
Gaussian described above. In this work, a more accurate PDF
model is obtained based on the GGD law whileconsideringthe
discardedcoefficients, as shown in Fig. 2. Note that the dis-
carded (zero-probable) coefficients result in a flat segment in
thecumulative distribution function(CDF).

Using the model above, we found that a more accurate bit al-
location scheme can be designed. Furthermore, considering this
model, no bit budget needs to be allocated for the “zero-prob-
able” values of the data, which effectively improves the design
of the lattice. In fact, based on this model, a more dedicated
quantization scheme is developed which effectively reduces the
quantization distortion for a given bit rate.

IV. L ATTICE VECTORQUANTIZATION

Let be an -dimensional source random vector
with an arbitrary joint probability density function

. Using an -D vector quantizer
with output points , the input point

gets mapped into aclosestoutput point . The optimal
encoder, selects the codeword(for a given source vector)
if: (where denotes the Euclidean
norm ) therefore: . The optimal encoder, thus,
operates on a nearest-neighbor or minimum-distortion basis.

A lattice in -D space is composed of all integer com-
binations of a set of linearly independent vectors that span the
space: , where

are linearly independent vectors in-D real Eu-
clidean space with , and are arbitrary
integers.

Around each lattice point, the region consisting of all points
of the underlying space which are closer to that point than any
other point is the so-calledVoronoiregion. For each cell of the
lattice, the reproduction vector is taken as the lattice vector lying
in that cell. For each particular lattice, the Voronoi cells have



Fig. 3. Portion of the 2-D hexagonal latticeA .

identical shape and size, regardless of the input to the quan-
tizer. Given the regular structure of lattice codebooks, training
as well as designing and transmitting the codebook is not nec-
essary, as opposed to other quantizers such as the LBG. The
best known lattices for several dimensions, as well as fast quan-
tizing and indexing algorithms were developed by Conway and
Sloane in [5], [6]. Some of the most frequently used lattices are
theroot lattices , , , the
Coxeter–Toble , the Barrnes–Wall and the Leech .
Fig. 3 illustrates a portion of the 2-D hexagonal latticeand
the hexagonal Voronoi regions around some of the lattice points.

A. Lattice Truncation and Scaling

The two critically important issues with LVQ are truncation
and scaling of the lattice. A truncation region is the subset of the
lattice that will actually be encoded. By truncation, the largest
radius of the lattice,, is chosen to determine the number of con-
centric shells of lattice points within the lattice volume. Conse-
quently, by truncation we determine the codebook size.

Since for a particular lattice, the Voronoi cells have iden-
tical shape and size, it is also desirable to scale the lattice. By
scaling, the density of the lattice points can be changed, and con-
sequently the ETD caused by quantizing source vectors, can be
minimized. For a scaled lattice, a scaling factor , squeezes
the lattice, increases the density of lattice points, and therefore
reduces the quantization distortion. However, the volume en-
closed by the truncated surface and the probability that a source
vector falls within that region decreases as well. An-D vector
falls into a truncated (by-radius) and scaled (by) lattice, if
its norm is less than a predetermined value of the maximum
energy;

(3)

The value of is usually determined experimentally and is
prefixed. In the proposed algorithm, the is automatically
determined within the algorithm.

Fig. 4. Pyramid lattice vector quantizer in 2-D.

As the wavelet transform coefficients have i.i.d. generalized
Gaussian source vectors, equal probability surfaces will have
a pyramidal shape [14], [17]. Fig. 4 illustrates PLVQ in 2-D.
Pyramidal LVQs are far less dense than spherical LVQs, for
sufficiently large radii, hence results in smaller pyramidal
codebooks for equivalent radii. However, with pyramidal lattice
point shells, wedge region problem arises when input vectors
falling into each wedge region are all projected to lattice points
with at least one coordinate being zero. These vectors will
then be reconstructed with 1 to degrees of freedom.
Additionally, as increases the number of different shapes of
the wedge regions increases too, and therefore the portion of
total space contained in these regions increases. As a result, the
total distortion due to the quantizing vectors falling in these
wedge regions also increases. Since the wedge regions contain
high-energy edge information, the wedge problem can have an
obvious distortion effect on the reconstructed image.

B. Previous Work Using PLVQ

In 1986, Fischer investigated Laplacian sources and the cor-
responding pyramidal surfaces of equal probability [14]. Due to
the nonexistence of explicit relationship between the radius of
pyramid and the codebook size,3 he limited his work to cubic
lattices. In his approach, only the vectors on the outermost shell
are taken as codewords. His quantizer provided good results
(in MSE sense) for input sequences with high-dimensions. For
lower dimension quantizers, he suggested concentric lattice
point shells.

Still with the lack of an explicit function, Jeong in [17]
considered cubic lattices only. His algorithm uses constant
PDFs inside each Voronoi cell and inside each concentric
lattice. Using several-density lattice regions, his algorithm uses
experimentally determined values for the two main parameters
(scale factor, , and scale factor ratio,), usingMonte Carlo
simulations.

3The relationship between the radius of pyramidal volume and the codebook
size is known as� function which was introduced by Barlaud in [12].



One of the best image compression techniques using PLVQ
was proposed by Barlaudet al. in 1994 [12]. However, their
technique had also several drawbacks. The lattice truncation en-
ergy, , and the maximum energy considered for the source,

, were determined experimentally. Also, the entropy mea-
sure used, was not achievable because the codebook size can be
orders of magnitude greater than the number of quantizer source
vectors [9], [28]. Furthermore, their algorithm does not consider
wedge region problem encountered with pyramidal shells.

To overcome these difficulties, a concentric double-density
PLVQ was discussed by Powell in [28] in which several as-
sumptions about the variables were made. In his work, the ratio
of the scaling factors of the concentric lattices, the ratio of the
distortions in each of the concentric lattices, and the maximum
lattice height (radius) of one of the lattices, are determined ex-
perimentally. Additionally, training and multi-quantizing proce-
dures were still needed.

V. PROPOSEDALGORITHMS

In the proposed algorithm, the wavelet packets associated
with the 73-Subband decomposition structure [23], are first ap-
plied to mean-removed input source image. The wavelet repre-
sentations are then separated as 1to 4 subimages. In the 1
to 4 subimages (which are chosen to be lossy encoded) first,
a hard thresholdingscheme is applied where part of the coef-
ficients with an energy less than a predetermined threshold are
set to zero. The threshold (same for all subbands) is based on
the required overall bit rate and the reconstructed image quality.

The 1 subimage is usually discarded in existing techniques
(including the FBI’s WSQ). Since this subimage has high-fre-
quency content discarding this subband leads to a slightly
blurred reconstructed image. In this work, the 1subimage
is quantized using a simplepositive–negative mean(PNM)
scheme. In the PNM scheme, the zero coefficients mostly
caused by the hard thresholding scheme are first discarded.
The remaining coefficients are then mapped to a binary data
containing the mean of the positive and the mean of the
negative data. The algorithm is simple (no need for quantizing
and indexing), while the quality of the reconstructed image
is mostly preserved. The resulting center dead zone reduces
picture noise contained in high-frequency subimages.

The 1 to 2 subimages are quantized using the 8-D lattice
and the 2 to 4 subimages are quantized using the 4-D lattice

. To do so, each subimage is first mapped to the desirable-D
vectors. To form these-D vectors, the nonzero coefficients of
the 1 to 3 subimages as well as all of the coefficients of the
4 and 4 subimages are used. In this work, in forming these
vectors, the nonneighboring coefficients are selected in a prede-
termined manner and the last vector is zero padded when neces-
sary. Experiments showed that using the above strategy, we can
achieve a better performance (see [24] for details).

To obtain a better trade-off between the rate and distortion,
soft thresholdingis also applied. First, the 1to 4 subimages
are standardized to have zero-mean and unit-variance; this leads
to similar PDFs withnarrow main lobe. Consequently, the re-
sulting standardized subimages can be quantized using similar
algorithms. Furthermore, to save on computational cost deci-

mals of resulting coefficients are discarded. This actually re-
duces the number of different symbols to be encoded and results
in a much simpler entropy encoding procedure, which speeds
up the algorithm efficiently with only about 0.04 dB reduction
on thepeak signal-to-noise ratios(PSNR) [23]. Then, optimal
bit allocations and the corresponding distortion measures

(at level and direction ) are determined.
For LVQ with any arbitrary PDF, the expected distortion in

( )th subimage is given by [11], [15]

(4)

with,

(5)

where is the upper bound of the MSE for -D lattice,
listed in [7], and is the bit rate. To compute the optimal
bit assignment for each subimage, we have to minimize

(6)
subject to

(7)

where is the bit requirement for the lowest resolution
subimage , and is a parameter used to control the
degree of noise shaping across subimages, given by [11]:

, where values of and are chosen
experimentally to match human vision.

The minimization problem can be solved using Lagrangian
multipliers as

(8)

where is a Lagrangian multiplier. Taking the partial derivative
with respect to , we get

(9)

As mentioned above, the 1and 4 subimages are not vector
quantized and the wavelet coefficients in 1subimage are hard
thresholded and packed; which leads to a negligible bit require-
ment for 1 . Therefore, following the derivation, the expression
of obtains as

(10)
with

(11)



Fig. 5. Proposed uniform pyramid lattice vector quantizer (U-PLVQ) in 2-D.

Finally, substituting (10) into (9), the optimal bit allocation, for
each subimage to be quantized by the proposed PLVQ algo-
rithms, is given by

(12)
Using (12) in (4), the optimal expected distortion of the quan-
tizer for each subimage is obtained.

A. Design of Lattice Parameters for U-PLVQ

In the proposeduniformPLVQ (U-PLVQ) algorithm, for the
4 and 4 subimages (with no discarded data) two lattice densi-
ties and for the 1 to 3 subimages (with discarded data) three
lattice densities are considered. For each case, the lattice trunca-
tion level, , and lattice scaling factor,, are designed in order to
give the smallest possible ETD, using the allocated bit budget.
The computation of the lattice parameters, for each case, is pre-
sented below.

For the 1 to 3 subimages, considering the PDF of the
wavelet coefficients with discarded data, three concentric lattice
vector quantizers are used where the second lattice is assumed
to be as dense as possible and the first and third lattices are
empty, as shown for 2-D case in Fig. 5.

Considering the discarded data within these subimages, the
allocated bit budget and the corresponding distortion mea-
sure are computed by using (12) and (4), respectively,
while using the distribution model with discarded data discussed
in Section III-B.

The proposed optimization algorithm starts with the best pos-
sible condition under which all input vectors are contained in-
side the second lattice which has the smallest possible scaling
factor. The ETD of the scaled lattice is defined as

(13)

where is the probability of the input vectors lying within the
second lattice and is the upper MSE bound, given in [7].

Since the vectors within the first lattice are discarded and the
vectors within the third lattice are projected to the outermost
shell of the second lattice, we have . We aim at com-
puting the scaling factor and the truncation level so that the ob-
tained ETD becomes smaller than the predetermined distortion
measurement , consequently

(14)

where is a variable with . Using (13) in (14), the scaling
factor is obtained as

(15)

The truncation levels are obtained from (3) as

(16)

where is the minimum energy of input vectors, starts
with the maximum energy ( norm) of input vectors, and
denotes the smallest integer greater than or equal to.

Using the function, the codebook size can be determined
as

(17)

the required bit rate is then

(18)

where is lattice dimension in the ( )th subimage.
The optimization algorithm firstly computes the CDF of the
norm of the input vectors. Starting with a small value for

(e.g., 0.3) and a maximum value for , the corresponding
values for , , , and are obtained using (15), (16), and
(18), respectively.

If bpp, the condition is met. Otherwise,(and
consequently ) is reduced leading to a higherand hence
a smaller and .

In fact, in this situation the algorithm allows a small number
of vectors to be projected on the outermost shell of the second
lattice. However, since is as small as possible (and conse-
quently the lattice is as dense as possible), the ETD has the
smallest possible value. If the current condition cannot be met,
even with the smallest appropriate , the algorithm allows a
slightly higher . Continuing with the procedure, the algorithm
converges for most sources in few iterations to the best lattice
structure; which gives the smallest quantization distortion for
the allocated bit budget to the subimage. Additionally, at each
iteration, if the value of tends to a bit rate which is not afford-
able, the algorithm does not continue the loop and checks for a
higher ETD.

Notice that no assumptions about the different parameters are
made and there is no need to go through training and multi-
quantizing procedures. Furthermore, since the range of desired
values of is very small, the algorithm converges in few
iterations. A flow chart of the algorithm is depicted in Fig. 6.

The algorithm above presents several advantages:



Fig. 6. Flow chart for computation of truncation level,r , and scaling factor,
s, for proposed U-PLVQ algorithm (with discarded data).

• bit budget distributed more accurately among the subim-
ages;

• no bit rate needs to be allocated to the zero-probable dis-
carded data, which reduces the required bit rate (and
hence the codebook size);

• with less bit requirement, the optimization algorithm can
converge while still checking for a small (and hence a
small ETD);

• the algorithm designs the lattice structures in a way that
gives less quantization distortion for the allocated bit rate.

Following the above procedure, the lattice codewords are then
indexed, using the fast encoding method in [6]. A schematic
block diagram of the proposed compression/decompression al-
gorithm is shown in Fig. 7.

Indices of source vectors projected to the outermost shell of
the lattice should be transmitted as side information. Since the

Fig. 7. Schematic block diagram of proposed compression algorithm.

algorithm is designed in a way to have most of source vectors
contained in the lattice, the amount of corresponding side infor-
mation is negligible [e.g., (610 8 2)/(512 512) 0.0372
bpp for a fingerprint image with hard thresholding of 0.1].

The average information of codebook, zeroth order entropy,
is measured as

bpp (19)

where is the probability of selecting the -D index
vector , belonging to the obtained indices at leveland
corresponding to the orientation, during coding of ( )th
subimage, and is the number of different index vectors in
that subimage. The total estimated entropy,, is obtained by

bpp (20)

where is the depth of the wavelet decomposition,
is the codebook size at the subimage, and is the size
of the original image.

B. Design of Lattice Parameters for PU-PLVQ

The lattice vector quantizer produces minimum distortion for
inputs with uniform distributions. For an arbitrary joint PDF

, the “optimal” lattice point density should be pro-
portional to [8]. This equation shows that an op-
timal LVQ must have a denser clustering of lattice points for
more probable vectors. To do this, the bit budget must be actu-
ally allocated proportionally to the probability of vectors. One
way to expand on this idea, is to assume that the source dis-
tribution is piecewise uniform between a few surfaces of con-
stant probability. This results in a quantizer that places lattices of



Fig. 8. Proposed piecewise-uniform pyramid lattice vector quantizer
(PU-PLVQ) in 2-D.

constant density between concentric surfaces of constant proba-
bility. This may not result in the minimum entropy output, but it
does result in a lower achievable bit rate after entropy coding
a finite amount of quantizer outputs with a complexity con-
strained system [28].

To do so, in our proposedpiecewise-uniformPLVQ (PU-
PLVQ) algorithm, for the 4 and 4 subimages (with no dis-
carded data) three lattice densities and for the 1to 3 subim-
ages (with discarded data) four lattice densities are considered.
Our proposed algorithm for computing the lattice parameters is
presented below.

For the 1 to 3 subimages, considering the joint PDF of
input sources with discarded data, four concentric lattice vector
quantizers are applied which are separated by three surfaces of
constant probabilities. Having a highly nonuniform and sharp
PDF, the second lattice is assumed to be as dense as possible,
the third lattice is sparse, and the first and fourth lattices are
empty, as shown for 2-D case in Fig. 8. The third lattice with a
sparse density, is designed to includeless probablehigh-energy
vectors which mostly fall into wedge regions. In fact, the third
lattice is actually used to quantize the edge information more
accurately. By allowing the density of lattice points in the third
volume to be much lower than the second, the truncation of the
third lattice does not need to be restricted. Consequently, the
third lattice can actually contain a large portion or all of the
volume that a high-energy source vector might fall into. Note
that since the third lattice is a truncated sparse lattice it does not
lead to a significant increase in the codebook size.

For a PU-PLVQ, the ETD is defined as

(21)

where is the probability of input vectors lying within the
th lattice, is the scaling factor of the th lattice.

Since the vectors within the first lattice are discarded and the
vectors within the fourth lattice are projected to the outermost

shell of the third lattice, we have

(22)

The ratio of scaling factors is

(23)

where . Using (14), (22), and (23) in (21), we get

(24)

The total codebook size is

(25)

where the truncation levels are given as

(26)

where is the minimum energy of input vectors and
starts with maximum energy of input vectors. Thus, the required
bit rate becomes

bpp (27)

with,

Considering the discarded data within the subimages, the al-
located bit budget and the corresponding distortion mea-
sure are computed using the distribution model discussed
in Section III-B. Computing the CDF of the norm of the input
vectors, the optimization algorithm initially starts with the best
possible condition under which all input vectors are contained
inside the second and third lattices where they have the smallest
possible scaling factors. Starting with a small value forand
the maximum energy for , the corresponding values of the

, , and are computed. The condition is examined using
Eq. (27). If the condition is met. Otherwise, first

increases leading to a smaller difference between two scales.
If this is not enough, decreases leading to a smaller .
If the bit budget is still less than the required , de-
creases and allows a small number of vectors to be projected
on the outermost shell of the third lattice. If this condition
can not be met, the algorithm checks a slightly higher, and
iterations continue. The experimental results showed that with

which leads to a small codebook size (requiring less
bits), the proposed algorithm always computes the truncation
levels and scaling factors which lead to a small ETD measure
in few iterations. Furthermore, in each iteration if the value of
the or , or tends to a very high bit rate, the algo-
rithm does not continue the loop and checks the next condition.
A flow chart of the proposed algorithm is depicted in Fig. 9.



Fig. 9. Flow chart for computation of truncation levels,r , and scaling factors,
s , for proposed PU-PLVQ algorithm (with discarded data).

Despite a small increase in the computation of the lattice
parameters, the PU-PLVQ algorithm is preferred over the
U-PLVQ algorithm given the following advantages: It con-
siders the (nonuniform) joint PDF of input sources, resolves
the wedge region problem encountered with pyramidal lattices,
and therefore results in a better performance (see performance
comparisons in Section VI).

For the PU-PLVQ case, the average information of codebook
(zeroth order entropy) is

bpp (28)

where for each lattice is obtained using

(29)

TABLE II
PERFORMANCE OFDIFFERENTLOSSLESSCODERS[LD: LEVEL-DIRECTION, Ad:

ADAPTIVE, Ar: ARITHMETIC, Hu: HUFFMAN, AND Ca: CALIC]

TABLE III
PERFORMANCE OFDIFFERENTLOSSLESSCODERSREGARDING LOCATIONS OF

NONZEROELEMENTS [LD: LEVEL-DIRECTION, NZ: NONZEROELEMENTS, Ad:
ADAPTIVE, Ar: ARITHMETIC, AND Hu: HUFFMAN]

where is the probability of selecting the-D index
vector , during the coding of theth concentric lattice in
that subimage. The total estimated entropy,, is computed as

bpp (30)

where is the depth of the wavelet decomposition,
is the codebook size for each subimage, and is the size
of original image.

C. Lossless Compression Algorithms

Lossless compression is chosen for the part of the data which
has high effect on the reconstructed image quality. For the
4 and 4 subimages, we examined several lossless coding
schemes. To adapt to nonstationarity in the data, adaptive
arithmetic, adaptiveHuffman, and theCALIC (context-based
adaptive lossless image codec) [34] schemes were examined.
Table II displays some of the results obtained for a typical
fingerprint image using Johnston-32D filter.

Given the coarse resolution data (lowpassed), the CALIC with
its Huffman version was found to give the best performance.

As described in Section V, the nonzero coefficients of the 1
to 3 subimages are quantized. Consequently, the locations of
nonzero coefficients must be transmitted as side information.
To reduce the required bit rate, the following procedure is pro-
posed. First, indices of nonzero elements are mapped to a binary
image with ones in the nonzero locations. The obtained binary
images have few nonzero elements which are weakly correlated.
To encode these binary images, different lossless techniques
were examined. These included: the JBIG (Joint Bilevel Image
Experts Group) [25], adaptive arithmetic coding [16], adaptive
Huffman coding [27], squeezing 8 binary bits into 1 compressed
grey-level byte, etc.

Table III illustrates the performance of different methods (in
bytes) for some of the subimages, for a fingerprint image with
hard thresholding level of 0.067.

From the results, we note that

• due to the low correlation in the data, a simple
zero-memory encoder should be satisfactory;



TABLE IV
PSNRS AND CPU COSTS FORDIFFERENTDECOMPOSITIONSTRUCTURES,

SHOWN IN FIG. 1, USING DIFFERENTFILTERS (5% OF BESTCOEFFICIENTS ARE

USED WITH NO QUANTIZATION ) [EBBBS: ENTROPY-BASED BEST BASIS

SELECTION, OWT: ORDINARY WAVELET TRANSFORM]

TABLE V
SEVERAL QUADRATURE MIRROR FILTER COEFFICIENTS. IN JOHNSTONFILTER,
COEFFICIENTS ARELISTED FROM CENTER TOEND [J : JOHNSTON-32D,
S : SYMMETRIC-16,C : COIFMAN-18 ,D : DAUBECHIES-12 TAP]

• the adaptive Arithmetic coding gave the best performance;
• using the proposed technique, the bit requirement for the

side information to be transmitted has decreased signifi-
cantly.

In addition, the indices of lattice codewords as well as the
PNM values are adaptive Arithmetic coded.

VI. EXPERIMENTAL RESULTS

Both the U-PLVQ and the PU-PLVQ algorithms were imple-
mented and tested on a database of 512512 grey-level finger-
print images.

First, the performance of the proposed 73-Subband decom-
position structure was investigated. Using a typical fingerprint
image, the performance of different types of five-level decom-
position structures, shown in Fig. 1, were examined. To remove
the effect of quantization on the performance of different struc-
tures, the quantization process was not applied. Table IV shows
the resultingpeak signal-to-noise ratio(PSNR), in decibels, and
the requiredcentral processing unit(CPU) time, in seconds, for
each structure (the CPU times are recorded to give a relative
measure of the computational cost of each structure). The ac-
tual filter coefficients are listed in Table V.

For grey-level 8bits per pixel(bpp) images, the PSNR, in
decibels, is computed as

dB (31)

Fig. 10. RMSE of different decomposition structures, using different filters
(no quantization).

with root mean square error(RMSE) defined as

(32)

where and are the lengths of image, andand are the
original and reconstructed intensities.

The RMSE performance of different structures is displayed
in Fig. 10. Also, the family was found to slightly outper-
form theDaubechies 12-tap orthonormal wavelet. Additionally,
different types of biorthogonal filters were used with results
showing the superior performance of the Johnston-filter.

The structures shown in Fig. 1 were also evaluated when used
in conjunction with the complete coding process. Implementing
the different structures associated with the Johnston filter, the
obtained wavelet representations were compressed using the
proposed PU-PLVQ algorithm. In this case, as discussed in
Section V, the 1 to 4 subimages were hard thresholded such
that only 5% of the wavelet coefficients (in energy sense) were
retained. Table VI shows the resulting PSNRs.

Tables IV and VI show that despite the very high computa-
tion complexity of the EBBBS method, compared to that of the
proposed fixed 73-Subband decomposition, their performances
are very similar.

Furthermore, by comparing the performance of the proposed
73-Subband and the FBI’s 64-Subband in these tables, one can
see that in all cases the 73-Subband outperforms the 64-Sub-
band while it is computationally less expensive. These Tables
also show the efficiency of the wavelet packets compared to the
ordinary wavelet transform.

Subsequently, the performance of the proposed uniform
and piecewise-uniform compression algorithms, at different
bit rates, was compared to that of other prominent image
compression algorithms.

First, the average performances of the proposed algorithms
when using the root lattices and , and the integer lattices

and were tested. The algorithms were run on a set of 24



TABLE VI
PERFORMANCE OFDIFFERENTDECOMPOSITIONSTRUCTURES, SHOWN IN

FIG. 1, USING THE PROPOSEDPU-PLVQ ALGORITHM (5% OF BEST

COEFFICIENTS AREUSED) [EBBBS: ENTROPY-BASED BESTBASIS SELECTION,
OWT: ORDINARY WAVELET TRANSFORM]

Fig. 11. Average performance of different standard lattices, for fingerprint
images [ED: E &D root lattices, : integer lattices].

fingerprint images of size 512 512. The results are shown in
Fig. 11.

Fig. 12 and Table VII shows the average performances of the
proposed algorithms, the standard JPEG [32], and the FBI’s
standard WSQ [2]. The same set of images were used for the
proposed algorithms as well as the JPEG algorithm. For the
WSQ algorithm, the rate-distortion performance reported in
[32] for 512 512 fingerprint images was used. The results
obtained from different experiments showed that at low bit
rates the proposed algorithms with the root lattices and

outperform the case with the integer latticesand by
about 2 dB in most cases (see Fig. 11).

To give a relative measure of the computational cost of the
proposed algorithms, Table VIII lists the required CPU costs,
in minutes, for a sample fingerprint image (using MATLAB
on an UNIX platform). The reported CPU costs comprise all
stages of the compression/decompression algorithms, including
the wavelet packets.

Fig. 12 and Table VII show the superior performance of the
proposed image compression algorithms compared to that of the
standard JPEG and the standard WSQ. These results also show
that the proposed PU-PLVQ algorithm outperforms the U-PLVQ
algorithm, while the computational cost of the former technique
is not significantly higher than the latter, as shown in Table VIII.
Note that the original images are compressed only once, while
theywillbedecompressedfrequently inmostapplications.Ascan
beseenfromTableVIII,evenwithMATLABcodes, theCPUcost

Fig. 12. Average performance of the proposed algorithms as well as the JPEG
and the WSQ algorithms, for various bit rates.

TABLE VII
RESULTING AVERAGE PSNRS FROM DIFFERENTALGORITHMS

TABLE VIII
CPU COSTS OF ASAMPLE FINGERPRINTIMAGE

Fig. 13. Performance of different image compression algorithms, for “Lena”
image [ : integer lattices].

of the PU-PLVQ decompression algorithm is comparable with
that of the U-PLVQ decompression algorithm.

To compare the performance of the proposed algorithm with
that of other existing algorithms using other images, the ubiq-
uitous “Lena” image 512 512 was also encoded. Using this



(a)

(b) (c)

(d) (e)

(f) (g)

Fig. 14. (a) Original image; PSNRs for 12 : 1 (0.65 bpp) and 53 : 1 (0.15 bpp);
(b) PU-PLVQ: 41.28 dB; (c) PU-PLVQ: 29.96 dB; (d) U-PLVQ: 39.26 dB; (e)
U-PLVQ: 29.58 dB; (f) JPEG: 30.95 dB; and (g) JPEG: 21.50 dB.

image, the PSNRs obtained from the JPEG, Barlaud’s [12], and
the proposed PU-PLVQ and U-PLVQ algorithms for 0.17 bpp,
were 27.72 dB, 30.3 dB, 36.95 dB, and 36.26 dB, respectively.
Fig. 13 shows the performance of the proposed algorithms as
well as that of several prominent image compression algorithms
[19], [20], [29]–[32], [35] when encoding this image.

Figs. 14 and 15 demonstrate the quality of the reconstructed
images obtained using different algorithms, at various bit rates.

Also, to show that the fidelity of the minutiae is preserved
during the proposed compression/decompression algorithm,

(a) (b)

(c) (d)

Fig. 15. (a) Original image. Reconstructed images with 20 : 1 compression
(0.4 bpp); (b) proposed PU-PLVQ (40.10 dB); (c) WSQ (31.41 dB); and (d)
JPEG (29.52 dB).

(a)

(b) (c)

Fig. 16. (a) Original image. PSNRs for 20 : 1 (0.40 bpp) and 53 : 1 (0.15 bpp),
using proposed PU-PLVQ algorithm: (b) 34.98 dB; and (c) 28.07 dB.

Fig. 16 shows an enlarged portion of an original and a recon-
structed image of a typical fingerprint image, at compression
ratios of 20 : 1 and 53 : 1.

VII. CONCLUSION

A new compression algorithm (with two variations) adapted
to fingerprint images is introduced. A modified wavelet packet



scheme is developed to decorrelate image pixels, which uses the
proposed fixed decomposition structure (matched to fingerprint
images).

A statistical analysis of the subbands, led to an optimization
of the design of different subband coders and the bit allocation
among subbands. The algorithm uses both hard and soft thresh-
olding schemes to make the process fast and robust.

We presented a new design method for optimizing the
lattice parameters, for both uniform and piecewise-uniform
PLVQs, with no need for preassumptions. The design is based
on a precise distribution model of the wavelet coefficients in
each subimage and aims at achieving the best rate-distortion
function. In the proposed piecewise-uniform PLVQ, the wedge
problem encountered with pyramidal lattice point shells is also
resolved.

The proposed algorithm adapts to variability in input data and
to overall allocated bit budgets. At very low bit rates, the devel-
oped PNM method improves the quality of the reconstructed
image while keeping the algorithm simple and fast. A method
for reducing bit requirement of necessary side information has
also been introduced.

In addition to the proposed algorithm, the performance of
other prominent algorithms is also discussed. Experimental re-
sults clearly show that the proposed compression technique re-
sults in higher quality reconstructed images compared to that
of other prominent algorithms operating at similar bit rates. The
work developed here will be of substantial benefit in forensic ap-
plications where high compression ratios while preserving ridge
details would help in the storage and communication problems.
Experiments carried in conjunction with the Queensland Police
showed that our algorithms, even when operating at 50 : 1 com-
pression, can be used in subsequent identification stages based
on reconstructed images.
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