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Abstract—A novel compression algorithm for fingerprint im- One of the main difficulties in developing compression
ages is introduced. Usingvavelet packetsind lattice vector quan-  algorithms for fingerprints resides in the need for preserving
tization, a new vector quantization scheme based on an accuratethe minutiae(ridges endings and bifurcations) which are sub-

model for the distribution of the wavelet coefficients is presented. N L . . .
The model is based on the generalized Gaussian distribution. sequently used in identification. To achieve high compression

We also discuss a new method for determining thmrgest radius ratios while retaining these fine detai|S, wavelet paCketS are
of the lattice used and itsscaling factor, for both uniform and piece-  considered in this work. To save on computation, transmission,
wise-uniform pyramidal lattices. The proposed algorithms aim at  and storage costs, fexed decomposition structure, tailored to
achieving the best rate-distortion function by adapting to the char- fingerprint images, is designed

acteristics of the subimages. In the proposed optimization algo- L . .

rithm, no assumptions about the lattice parameters are made, and To O_bta'n _h'gh compresspn r"fmos' we f.OHOW the above trans-
no training and multi-quantizing are required. We also show that formation with vector quantization. In this work, we chose to
the wedge region problem encountered with sharply distributed uselattice vector quantizatio(LVQ) given its superior perfor-

random sources is resolved in the proposed algorithm. mance over other types of vector quantizers; such as the LBG
The proposed algorithms adapt to variability in input images [26].

and to specified bit rates. Compared to other available image . .
compression algorithms, the proposed algorithms result in higher To apply LVQ, one needs to determine thancation level

quality reconstructed images for identical bit rates. andscaling factorof the lattice. By truncation, the largest radius
of the lattice,r, is chosen determining the codebook sizg,
By scaling, the density of lattice points is changed to minimize
the expected total distortio(ETD) caused by quantization. In
previous lattice-based compression algorithms, the lattice pa-
. INTRODUCTION rameters are commonly predetermined, leading to nonoptimized
HE fundamental goal of image compression is to obtaguantization schemes. In this paper, a new approach for esti-
the best possible quality, for a given storage or commummating these parameters is proposed. The proposed quantizers
cation capacity. One of the main applications where compresm at minimizing the quantization distortion by considering the
sion is crucial is in fingerprint analysis for forensic applicacharacteristics of each subimage data. The design is based on a
tions. The increasing amount of fingerprints collected by law eprecisemodel for the distribution function of the wavelet coef-
forcement agencies has created an enormous problem in stofagients and results in a superior performance compared to other
and transmission. Fingerprints are digitized at a resolution afailable algorithms [2], [19], [29]-[32], [21], [24].
500 pixels/inch with 256 grey-levelsAlthough there are many  Since LVQ is a multidimensional generalization of uniform
image compression techniques currently available, there still @santization, it produces minimum distortion for inputs with
ists a need to develop faster and more robust algorithms adaptadorm distributions. In order to take advantage of the prop-
to fingerprints. erties of LVQ and its fast implementation while considering the
i.i.d. nonuniform distribution of the wavelet coefficients, we use
a piecewise-uniform pyramid LV@U-PLVQ) algorithm. The
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1Grey-level images have a monatural appearance to human viewers than

do black/white images and allow a higher level of subjective discrimination by 1€ rest of the paper is organized as f_OHOWS.- The Wave!et
fingerprint examiners (who make the final decision in identifying fingerprintsfransform and wavelet packets are briefly introduced in



Section Il. Subband image coding, statistical properties of su—————— i

bands, and distribution of the wavelet coefficients for differer————11"11

subbands are described in Section Ill. LVQ, lattice truncatiq
and scaling, and previous work on pyramid LVQ are present¢

in Section IV. In Section V, the proposed PLVQ algorithms
design of lattice parameters for different subbands, and t
lossless compression algorithms used for certain subimages
presented. Experimental results are discussed in Section

followed by a conclusion in Section VII. ’ (@ (b)

Il. BRIEF INTRODUCTION TO THEWAVELET TRANSFORM AND L]
WAVELET PACKETS I 22 2

Fingerprintimages can be seen as texture patterns of flow g = I S S B EE
entations with sharp discontinuities. Given this particular natu I — 1
of fingerprint images and the need for retaining ridge fine de -
tails and their inter-relation, the wavelet decomposition is co N T ==
sidered here. Some advantages of using the wavelet transfe, . - LT
include: providing a multiscale representation of a given image, (© (d)
flexibility in time-frequency tiling, attractive properties in eX-Fig. 1. Five-level decomposition structures: (a) proposed 73-Subband; (b)
tracting features from nonstationary signals, good energy coWSQ's 64-subband; (c) EBBBS using Johnston-32D filter; and (d) EBBBS.
paction property, ability to match human vision spectral proper-

ties, low computational loa(N')), possibility of using short (11 on, the reconstructed image. Note that, this also reduces the
filters (while reducing the Gibbs ringing effects), absence @f,mpytational load. Furthermore, given the importance of the
block artifacts, and providing a sparser representation than &.ond wavelet level, we apply further decompositions at this
d!screte cosine transform (higher lossy compression gains at e As a result, the 73-Subband is computationally less ex-
bit rates)... ) pensive than the 64-Subband while it outperforms the 64-Sub-
_ Inaddition to the above, wavelet packets provide a more flegz nq a5 shown in Section VI. The 73-Subband decomposition is
ible decomposition by allowing decompositions at any noqgefixedand is found to provide comparable results to those ob-

of the decomposition tree. This can result in a structure that,qq using the EBBBS method, which requires an extremely
matches the characteristics of specific data of interest. To qﬁgh computational power (see Section VI).

tain the best decomposition structure, in émtropy-based best
basis selectioEBBBS) algorithm [4], a library of orthonormal
basis is designed providing a projection with the lowest infor-
mation cost. Using the Shannon entropy as the cost functionData compression is the process of reducing the amount of
for a given image (or family of images), a decomposition strugit rate required to represent a given set of data. Compression
ture which results in the minimum entropy is obtained using than be applied using lossless and/or lossy techniques. In lossless
EBBBS algorithm. compression, there is no loss of information and data is totally

Extensive work on power spectral density estimates from ngreserved, however the coding gain can not be very high. On the
merous fingerprints has shown that natural frequencies of ridgsther hand, in lossy compression, part of information is lost but
in fingerprint images are in the portion of spectrum containeghigher coding gain can be achieved.
roughly in the range ofr/8—r /4 (corresponding to the third  After transforming the data, one needs to decide on the quan-
wavelet decomposition level). In this work, we opted to use thation scheme to be used. One way to improve quantization
fixed 73-Subband decomposition which we developed earligérformance is to adjust the quantizer to the characteristics of
[22], as opposed to the FBI's 64-Subband [2]. This structure wagferent subbands in the case of subband coding. To do so, the
chosen based on experiments carried on the distribution of enfliantizer should be tailored to tpeobability density functios
gies over different subbands and their effect on the quality of tiDF) of the each of the subbands. Consequently, in order to
reconstructed images and by analyzing the best trees obtaingde an efficient compression algorithm, we firstly need to in-
for a variety of fingerprints, taking into account the spectral segestigate the statistical properties of the different subbands.
sitivities in the human vision systemTypical decomposition
structures, examined in this work, are depicted in Fig. 1. A. Statistical Properties of Subbands

As shown in Fig. 1, for the 73-Subband, we do not apply fur- . . -
ther decomposition to the diagonal subimage of the first wavelet?ralble I displays the results obtam.ed frpm the_sta_tlstlcal anal-
level (1d), as opposed to the 64-Subband. This is due to the | is of different subimages of a typical fingerprint image. The

energy content, low variance, and low effect of this subima%% le ShOW.S the §tat|st|cs of the wavelet paCk?“ coe_fflClgnt; for
ifferent orientations (subbands). For each orientation, it gives

_ o o the minima, maxima, meam), standard deviatiors{), and the
2t is shown that the human vision is more sensitive to contrasts at low fre- d lized | fth .. d .
quencies while details at high resolution and diagonal directions are less visg¥¢@n-removed normalized values of the minima and maxima.

to human eye [3], [33]. Here, the Johnston-32D filter [18] is used.

I1l. SUBBAND IMAGE CODING



TABLE | N P
STATISTICS OF WAVELET PACKET COEFFICIENTS FORDIFFERENT SUBBANDS, | —
FOR A MEAN-REMOVED FINGERPRINT IMAGE [LD: LEVEL-DIRECTION, ‘
{1: MEAN, o STANDARD DEVIATION, d: DIAGONAL, v: VERTICAL, h: . {
HORIZONTAL, AND ¢: LOWPASSED

T

LDH Min [ Maz | p i % E
1d|| -13.67 | 15.13 |-0.01] 2.42 |-5.65 | 6.26
lv|| -52.27 | 62.30 |-0.05 5.73 |-9.11|10.88
1h|| -82.58 | 58.07 |-0.02| 6.75 |-12.23] 8.60

b
2d||-118.30 1 122.44 1-0.16] 12.17 1 -9.71 | 10.07 @ ()
: -2892.3: 5.59 |-0. 25.30 [-11. 69 Fig. 2. (a) Empirical cumulative distribution function of a subimage (with
52 ;34§; ?59; 82 8 88 ,)i ig 181 3166 ié 92 rounded and discarded data) and (b) histogram of the subimage and its model.
& -4 . J. =-U.UJd| £4. =0.x e}

3d| -500.41 | 507.91 |-0.18| 50.63 | -9.88 | 10.03

Min—pTMaz—p ” | | o
g 0 o |

3v||-435.21]413.29|0.67|70.44 | -6.19| 5.86 a nonlinear regression procedure for estimating the parameter
3h|[-517.80 | 640.32 [0.65| 75.79 | -6.84 | 8.44 nj.a Using

4d][-248.10] 286.52 [0.31] 58.06 | -4.28 | 4.93 ’

4y -352.67 | 376.88 |-2.71| 76.47 | -4.58 | 4.96 o\ 2 2 2

17| 60878 | 716.44 |5.51|113.96| -5.39 | 6.24 ( mean de"'a,“o,”) :Euxlj SR N C747) —n

47| -1483.50/3707.70| 1.39667.21| -2.23 | 5.55 standard deviatio E[z?]  T(1/n)I(3/n)

_, [ E|z]]?
(). e

From Table I, we notice the following:

« the range of the coefficients (Max—Min) and their vari- In our previous work [10], [24], we modeled the wavelet co-
ances grow as the resolution becomes coarser (whiefficients, with discarded zero elements, using the generalized
shows the importance of higher level subimages); Gaussian described above. In this work, a more accurate PDF

« after obtaining the standardized subimages, the range foodel is obtained based on the GGD law wititasideringthe
the resulting coefficients becomes smaller and comparalbliscardedcoefficients, as shown in Fig. 2. Note that the dis-
in all orientations at each level (which enables us to quaoarded (zero-probable) coefficients result in a flat segment in
tize different subbands with similar schemes). the cumulative distribution functioCDF).

Based on the above observations and extensive experiments dASing the model above, we found that a more accurate bit al-
a variety of fingerprint images, we chose to use location scheme can be designed. Furthermore, considering this
« lossless predictive coding for thé and 4, subbands; model, no bit budget needs to be allocated for the “zero-prob-

* lossy zero-memory compression algorithms for remaini le valu_es of the data, which effgcnvely improves the d_eS|gn
subbands. the lattice. In fact, based on this model, a more dedicated

quantization scheme is developed which effectively reduces the

L uantization distortion for a given bit rate.
B. Shape of Distribution g g

The shape. of the_ digtribution Qf the wavelet coefficients IV. LATTICE VECTOR QUANTIZATION
for each subimage is important in order to understand the
behavior of the coefficients and properly characterize these at-€t = be an n-dimensional source random vector
different resolutions. In [1], [13], it was shown that the PDRVith an arbitrary joint probability ~density function
of the wavelet coefficients can be closely approximated by tie () = fx(z1, ..., zn). Using ann-D vector quantizer

generalized Gaussian distributiof@GD). This GGD law is With output points{y,, y,, ..., .} € R", the input point
defined as: = € R™ gets mapped into elosesbutput pointy,. The optimal

encoder, selects the codewayd(for a given source vectar)
if: d(z,y;) < d(z,y;), Vj(whered denotes the Euclidean
fi,a(x) = aj qexp(—|bj qz|"*) norm L?) therefore:Q(z) = y,. The optimal encoder, thus,
172 operates on a nearest-neighbor or minimum-distortion basis.
1 T (njd) A lattice A,, in n-D spaceR™ is composed of all integer com-
aj,d = L\ ad o4 12 (1) binations of a set of linearly independent vectors that span the
2T (nj.d) »er (njld) spacelA, = {y € R™ |y = wia; + -+ + uya,}, where
' {ai, ..., a,} are linearly independent vectors:in-D real Eu-
wheren; 4 is ashapeparameter describing the exponential ratelidean spac&™ with m > n, and{uy, ..., u,} are arbitrary
of decay,s;, 4 is the standard deviation of the subimage at resitegers.
olution levelj and directiond, andT'(-) is the usual Gamma Around each lattice point, the region consisting of all points
function. The GGD withy; 4 = 1 coincides with the Lapla- of the underlying space which are closer to that point than any
cian PDF while, form; 4 = 2 it becomes a Gaussian PDF. Taother point is the so-calledoronoiregion. For each cell of the
match the real PDFy; 4 is usually computed using the’ test. lattice, the reproduction vector is taken as the lattice vector lying
As they? test is computationally expensive, we developed heir that cell. For each particular lattice, the Voronoi cells have
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Fig. 4. Pyramid lattice vector quantizer in 2-D.
Fig. 3. Portion of the 2-D hexagonal latti¢k, .

As the wavelet transform coefficients have i.i.d. generalized
identical shape and size, regardless of the input to the qu@ussian source vectors, equal probability surfaces will have
tizer. Given the regular structure of lattice codebooks, trainirégpyramidm shape [14], [17]. Fig. 4 illustrates PLVQ in 2-D.
as well as designing and transmitting the codebook is not Ng&;ramidal LVQs are far less dense than spherical LVQs, for
essary, as opposed to other quantizers such as the LBG. 3fifliciently large radii, hence results in smaller pyramidal
best known lattices for several dimensions, as well as fast quaggebooks for equivalent radii. However, with pyramidal lattice
tizing and indexing algorithms were developed by Conway anghint shells, wedge region problem arises when input vectors
Sloane in [5], [6]. Some of the most frequently used lattices afg)ing into each wedge region are all projected to lattice points
theroot lattices Ay, (n > 1), Dy(n > 2), En(n =6, 7, 8),the  wjth at least one coordinate being zero. These vectors will
Coxeter—TobleK5, the Barmes-Wall 1 and the Leeciz,.  then be reconstructed with 1 to — 1 degrees of freedom.

Fig. 3 illustrates a portion of the 2-D hexagonal lattiteand  Additionally, asn increases the number of different shapes of
the hexagonal Voronoi regions around some of the lattice poinfige wedge regions increases too, and therefore the portion of
total space contained in these regions increases. As a result, the
total distortion due to the quantizing vectors falling in these
The two critically important issues with LVQ are truncatiorwedge regions also increases. Since the wedge regions contain
and scaling of the lattice. A truncation region is the subset of thégh-energy edge information, the wedge problem can have an
lattice that will actually be encoded. By truncation, the largesbvious distortion effect on the reconstructed image.
radius of the latticey;, is chosen to determine the number of con-
centric shells of lattice points within the lattice volume. Consés. Previous Work Using PLVQ
quently, by truncation we determine the codebook &ize
Since for a particular lattice, the Voronoi cells have iden- s
tical shape and size, it is also desirable to scale the lattice. ﬁé
scaling, the density of the lattice points can be changed, and c
sequently the ETD caused by quantizing source vectors, ca
minimized. For a scaled lattice, a scaling factot 1, squeezes
the lattice, increases the density of lattice points, and theref

A. Lattice Truncation and Scaling

In 1986, Fischer investigated Laplacian sources and the cor-
ponding pyramidal surfaces of equal probability [14]. Due to
nonexistence of explicit relationship between the radius of
ramid and the codebook sizehe limited his work to cubic
fices. In his approach, only the vectors on the outermost shell
are taken as codewords. His quantizer provided good results

rr? MSE sense) for input sequences with high-dimensions. For
reduces the quantization distortion. However, the volume ) P q 9

. wer dimension quantizers, he suggested concentric lattice
closed by the truncated surface and the probability that a souFr)%gm shells q 99
vector falls within that region decreases as well.7AD vector G .- . .
. . L Still with the lack of an explicitvy function, Jeong in [17
falls into a truncated (by-radius) and scaled (by) lattice, if P " gin[17]

it 1.1 is less th determined val fth . considered cubic lattices only. His algorithm uses constant
Ie?\erg)r/]'cgm IS 1ess than a predetermined vaiue ot the maxim Fs inside each Voronoi cell and inside each concentric

lattice. Using several-density lattice regions, his algorithm uses

n experimentally determined values for the two main parameters
Z |2i| < Emax = 5. (3) (scale factorgy, and scale factor ratia;), usingMonte Carlo
i=1 simulations.

The value ofF,,.« is usually determined experimentally and is

prefixed. In the proposed algorithm, thg,. is automatically  stne rejationship between the radius of pyramidal volume and the codebook
determined within the algorithm. size is known a® function which was introduced by Barlaud in [12].



One of the best image compression techniques using PLWaals of resulting coefficients are discarded. This actually re-
was proposed by Barlauet al. in 1994 [12]. However, their duces the number of different symbols to be encoded and results
technique had also several drawbacks. The lattice truncation Bna much simpler entropy encoding procedure, which speeds
ergy, m, and the maximum energy considered for the souragp the algorithm efficiently with only about 0.04 dB reduction
Fax, Were determined experimentally. Also, the entropy mean thepeak signal-to-noise ratioSNR) [23]. Then, optimal
sure used, was not achievable because the codebook size carittalocationsiz; ; and the corresponding distortion measures
orders of magnitude greater than the number of quantizer soufzg, (at level;j and directiond) are determined.
vectors [9], [28]. Furthermore, their algorithm does not consider For LVQ with any arbitrary PDF, the expected distortion in
wedge region problem encountered with pyramidal shells. (4, d)th subimage is given by [11], [15]

To overcome these difficulties, a concentric double-density

PLVQ was discussed by Powell in [28] in which several as- Pi.d =Cj,q27 20 4)
sumptions about the variables were made. In his work, the ratiith,

of the scaling factors of the concentric lattices, the ratio of the o (24n;.q)
distortions in each of the concentric lattices, and the maximum Ci.d =P {/ {[fj,d(iﬂ)]"j’d/(QJr"j’d)} dl’} (5)

lattice height (radius) of one of the lattices, are determined ex-

perimentally. Additionally, training and multi-quantizing procewhere p; is the upper bound of the MSE far; 4-D lattice,

dures were still needed. listed in [7], andR; 4 is the bit rate. To compute the optimal
bit assignment for each subimage, we have to minimize

V. PROPOSEDALGORITHMS . 1 1 . . ‘
_ ~ min [Dr= ] Dy+— Z Bj,aDj,a(i)nj, a(i)y;, a(7)
In the proposed algorithm, the wavelet packets associated® ¢ nr i3
with the 73-Subband decomposition structure [23], are first ap- (6)

plied to mean-removed input source image. The wavelet repféldject to

sentations are then separated d4dl4/ subimages. In thedl

to 4w subimages_ (which are chose_n to be lossy encoded) first, Ry = ij Ry +

a hard thresholdingscheme is applied where part of the coef- 4

ficients with an energy less than a predetermined threshold are . . . .

set to zero. The threshold (same for all subbands) is based Fre Ry is the bit re_quwement for the lowest resolution

the required overall bit rate and the reconstructed image qual V Imagedc, gnd Bj,a Is a parameter used to f:oerI the )
The 1 subimage is usually discarded in existing techniqu roree (?f n0|se2<s;r1;':1p|ng across subimages, given by [11]:

(including the FBI's WSQ). Since this subimage has high-fré2- ¢ = 7’ 10810(c7 7 "), where values of andg;, 4 are chosen

guency content discarding this subband leads to a S”ghwperlmgmal!y to match human vision. . .
blurred reconstructed image. In this work, thé dubimage '€ Minimization problem can be solved using Lagrangian

1
2
np

3J
> Ry aiyng, ali)y;.a(i)  (7)

i=1

is quantized using a simplpositive-negative mear(PNM) multipliers as

scheme. In the PNM scheme, the zero coefficients mostly _ . 1 1

caused by the hard thresholding scheme are first discard : lDT - (RT - 5 Ru——

The remaining coefficients are then mapped to a binary data's-¢ 4 "

containing the mean of the positive and the mean of the 37

negative data. The algorithm is simple (no need for quantizing Z R; a(i)nj, a(i)y;. d@))] =0 (8)
and indexing), while the quality of the reconstructed image P

is mostly preserved. The resulting center dead zone reduces . ) o _ ) o
picture noise contained in high-frequency subimages. where) is a Lagrangian multiplier. Taking the partial derivative

The I to 24 subimages are quantized using the 8-D latfige With respect ta; 4, we get
and the 2 to 4 subima_lges are quantized using the 4—_D lattice 1 In(4)B;.4Cj. 4
D,. Todo so, each subimage is first mapped to the desirable Rja= B logy | ————)-

e A

vectors. To form these-D vectors, the nonzero coefficients of
the I to 3h subimages as well as all of the coefficients of the As mentioned above, the/land 4, subimages are not vector
4d and 4 subimages are used. In this work, in forming thesguantized and the wavelet coefficients i dubimage are hard
vectors, the nonneighboring coefficients are selected in a pretigesholded and packed; which leads to a negligible bit require-
termined manner and the last vector is zero padded when neceent for 1. Therefore, following the derivation, the expression
sary. Experiments showed that using the above strategy, we 0&n obtains as

©)

achieve a better performance (see [24] for details). B B 47 )47 —2)
To obtain a better trade-off between the rate and distortion, A = In(4) {2—2[RT—((RM/4 )+ (Ran /4 ))]5j7 (z}
soft thresholdings also applied. First, thevlto 4v subimages (20)
are standardized to have zero-mean and unit-variance; this leaith
to similar PDFs withnarrow main lobe. Consequently, the re- 371

sulting standardized subimages can be quantized using similar Eja= H B, a(i)C;, d(i)]nj_d(z’)yj.d(i)/n%} ) (11)

. . . J
algorithms. Furthermore, to save on computational cost deci- o



Since the vectors within the first lattice are discarded and the
vectors within the third lattice are projected to the outermost
Columnar shell of the second lattice, we haye = 1. We aim at com-
puting the scaling factor and the truncation level so that the ob-
tained ETD becomes smaller than the predetermined distortion
measuremerD; 4, consequently

Region

‘ Wedge ETD = oD;j 4 (14)
Region whereq is a variable withh < 1. Using (13) in (14), the scaling
h factor is obtained as
Osz_d
s = — 15
\/ paP (15)
The truncation levels are obtained from (3) as
v
. Emin Emax

Emin Emax ro = {T—‘ \ ry = { ; —‘ (16)

Fig. 5. Proposed uniform pyramid lattice vector quantizer (U-PLVQ) in 2-D. ) L )
whereE,;, is the minimum energy of input vectoiB,,,.., starts
with the maximum energyl{* norm) of input vectors, anfu]

Finally, substituting (10) into (9), the optimal bit allocation, fordenotes the smallest integer greater than or equal o

e_ach qu'”.‘age to be quantized by the proposed PLVQ algo_Using thev, function, the codebook size can be determined
rithms, is given by as

IR _ . O
Rj7 dopt = 47 Ry (R4Z+R4h) + 1 lo 2< Bj,dcmd ) |c| = [’/A(Tl) — I/_,\(T())] a7)

47 -2 2 47/ -2)
/ (12) the required bit rate is then

Using (12) in (4), the optimal expected distortion of the quan- . loga (va (1) — wa(r

tizer for each subimage is obtained. Rj 4= B A(nl») ; alro)) (18)
7, d

A. Design of Lattice Parameters for U-PLVQ wheren; 4 is lattice dimension in thej( d)th subimage.

In the proposediniformPLVQ (U-PLVQ) algorithm, for the The optimiza.tion algorithm firstly computes the CDF of the
4d and 4 subimages (with no discarded data) two lattice denglc norm of the input vectors. Starting with a small value dor
ties and for the & to 3k subimages (with discarded data) threé8-9-, 0-3) and a maximum value féi..., the corresponding
lattice densities are considered. For each case, the lattice truY@ues fors, 7o, 71, andR; 4 are obtained using (15), (16), and
tion level,r, and lattice scaling factos, are designed in order to (18), respectively. o _
give the smallest possible ETD, using the allocated bit budget!f £j,¢ < £, « bpp, the condition is met. Otherwis, (and
The computation of the lattice parameters, for each case, is gr@0sequentlys..) is reduced leading to a higherand hence
sented below. a smallerr; andR; 4.

For the L to 3k subimages, considering the PDF of the In fact, in this situation the algorithm allows a small number
wavelet coefficients with discarded data, three concentric lattieb Vectors to be projected on the outermost shell of the second
vector quantizers are used where the second lattice is assutAgife. However, since: is as small as possible (and conse-
to be as dense as possible and the first and third lattices 8HeNtly the lattice is as dense as possible), the ETD has the
empty, as shown for 2-D case in Fig. 5. smalles_,t possible value. If the current condltlor_1 cannot be met,

Considering the discarded data within these subimages, §y&n with the smallest approprialg,.., the algorithm allows a
allocated bit budgeR; , and the corresponding distortion measlightly highera. Continuing with the procedure, the algorithm
sure D; 4 are computed by using (12) and (4), respectivel§fONnverges for most sources in few iterations to thg bes.t lattice
while using the distribution model with discarded data discuss@fucture; which gives the smallest quantization distortion for
in Section III-B. the allocated bit budget to the subimage. Additionally, at each

The proposed optimization algorithm starts with the best pd&eration, if the value ofr tends to a bit rate which is not afford-
sible condition under which all input vectors are contained ifPle; the algorithm does not continue the loop and checks for a

side the second lattice which has the smallest possible scalm%‘er. ETD. ] ]
factor. The ETD of the scaled lattice is defined as otice that no assumptions about the different parameters are

made and there is no need to go through training and multi-
ETD = Ppys® (13) quantizing procedures. Furthermore, since the range of desired
values of ... is very small, the algorithm converges in few
whereP is the probability of the input vectors lying within theiterations. A flow chart of the algorithm is depicted in Fig. 6.
second lattice ang, is the upper MSE bound, given in [7]. The algorithm above presents several advantages:
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algorithm is designed in a way to have most of source vectors
contained in the lattice, the amount of corresponding side infor-
mation is negligible [e.g., (61@ 8 x 2)/(512x 512)= 0.0372
bpp for a fingerprint image with hard thresholding of 0.1].

g0 820 0) The average information of codebook, zeroth order entropy,
T is measured as
) 1 &
1o Rja=——— > p(vi)logyp(v;) bpp 19)
M d 5
No
Getthe next lower %0 Sx0d where p(v;) is the probability of selecting the:-D index
’ ' vector v;, belonging to the obtained indices at leveland
Yes corresponding to the orientatiafy during coding of {, d)th
@ subimage, and. is the number of different index vectors in
that subimage. The total estimated entropy,, is obtained by
Fig. 6. Flow chart for computation of truncation level, and scaling factor, 3 R s s
s, for proposed U-PLVQ algorithm (with discarded data). Z:l lz_:l 3, dj,dYj,d
Rp = ——— bpp (20)
nr

bit budget distributed more accurately among the subim-
ages; where.J is the depth of the wavelet decompositien,; X ;4

no bit rate needs to be allocated to the zero-probable digthe codebook size at thex y subimage, and?. is the size
carded data, which reduces the required bit fate (and of the original image.

hence the codebook size); ) )

with less bit requirement, the optimization algorithm caff- D€sign of Lattice Parameters for PU-PLVQ

converge while still checking for a small (and hence a  The lattice vector quantizer produces minimum distortion for
small ETD); inputs with uniform distributions. For an arbitrary joint PDF
the algorithm designs the lattice structures in a way thgik (=) € R", the “optimal” lattice point density should be pro-
gives less quantization distortion for the allocated bit ratportional tof (z)"/(*+2) [8]. This equation shows that an op-

Following the above procedure, the lattice codewords are thigmal LVQ must have a denser clustering of lattice points for
indexed, using the fast encoding method in [6]. A schematicore probable vectors. To do this, the bit budget must be actu-
block diagram of the proposed compression/decompressionaldly allocated proportionally to the probability of vectors. One
gorithm is shown in Fig. 7. way to expand on this idea, is to assume that the source dis-

Indices of source vectors projected to the outermost shelltabution is piecewise uniform between a few surfaces of con-
the lattice should be transmitted as side information. Since tsi@nt probability. This results in a quantizer that places lattices of



shell of the third lattice, we have

Columnar P,=1-P. (22)
Region The ratio of scaling factors is
=2t (23)
S2
Wedge wherek < 1. Using (14), (22), and (23) in (21), we get
Region
* kZO{Dj d

= : . 24
o \/pA(Pl(k2 —1)+1) 24)

The total codebook size is

e = {loatr) = ool + [ratrz) = (2 ) |} 29)

Emin Emax | Emax2 ) )
where the truncation levels are given as

Fig. 8. Proposed piecewise-uniform pyramid lattice vector quantizer B E LE
(PU-PLVQ) in 2-D. ro= { m”‘w . = {—ma"ll , To= ’7—111&1)(2—‘ (26)

51 S1 51

constant density between concentric surfaces of constant probB€re Ep;y is the minimum energy of input vectors af), .,
bility. This may not result in the minimum entropy output, but istarts with maximum energy of input vectors. Thus, the required
does result in a lower achievable bit rate after entropy codikif rate becomes
a finite amount of quantizer outputs with a complexity con- .
strained system [28]. Rja= PRy + (1 - P1)Ry bpp @7)

To do so, in our proposegiecewise-uniforrPLVQ (PU- Wwith,
PLVQ) algorithm, for the 4 and 4 subimages (with no dis-

Ry = B () = a(r0).

carded data) three lattice densities and for théal3h subim- N d

ages (with discarded data) four lattice densities are considered.

Our proposed algorithm for computing the lattice parameters is R log, (VA(Tz) — VA (i—l 7“1))
2 = .

presented below.

For the b to 3h subimages, considering the joint PDF of
input sources with discarded data, four concentric lattice vectorConsidering the discarded data within the subimages, the al-
quantizers are applied which are separated by three surfacegated bit budgef?; ; and the corresponding distortion mea-
constant probabilities. Having a highly nonuniform and shagreD;, « are computed using the distribution model discussed
PDF, the second lattice is assumed to be as dense as possibfeection IlI-B. Computing the CDF of the' norm of the input
the third lattice is sparse, and the first and fourth lattices ayectors, the optimization algorithm initially starts with the best
empty, as shown for 2-D case in Fig. 8. The third lattice with BOssible condition under which all input vectors are contained
sparse density, is designed to incluess probabléigh-energy inside the second and third lattices where they have the smallest
vectors which mostly fall into wedge regions. In fact, the thir@ossible scaling factors. Starting with a small valuedoand
lattice is actually used to quantize the edge information motiee maximum energy fak,..«, , the corresponding values of the
accurately. By allowing the density of lattice points in the third1, 7, andR; 4 are computed. The condition is examined using
volume to be much lower than the second, the truncation of th@- (27). If R; 4 < R; 4 the condition is met. Otherwise, first
third lattice does not need to be restricted. Consequently, thécreases leading to a smaller difference between two scales.
third lattice can actually contain a large portion or all of thé this is not enoughp; decreases leading to a smallgfax, -
volume that a high-energy source vector might fall into. Noté the bit budget is still less than the requirét 4, Emax, de-
that since the third lattice is a truncated sparse lattice it does ftgases and allows a small number of vectors to be projected
lead to a significant increase in the codebook size. on the outermost shell of the third lattiee. If this condition

For a PU-PLVQ, the ETD is defined as can not be met, the algorithm checks a slightly higheand

iterations continue. The experimental results showed that with
a < 1 which leads to a small codebook size (requiring less
ETD = py (Pls% + P23§) (21) bits), the proposed algorithm always computes the truncation
levels and scaling factors which lead to a small ETD measure
where P; is the probability of input vectors lying within the in few iterations. Furthermore, in each iteration if the value of
(7 + 1)th lattice,s; is the scaling factor of th& + 1)th lattice. the E,,,.., or E...x, , Or k tends to a very high bit rate, the algo-

Since the vectors within the first lattice are discarded and thiéhm does not continue the loop and checks the next condition.

vectors within the fourth lattice are projected to the outermodgt flow chart of the proposed algorithm is depicted in Fig. 9.

nj,d



TABLE I
PERFORMANCE OFDIFFERENTLOSSLESSCODERS[LD: LEVEL-DIRECTION, Ad:
ADAPTIVE, Ar: ARITHMETIC, Hu: HUFFMAN, AND Ca: CALIC]

X, R(j,d). DGd)

sﬁ-i | iy |

=t LD [ Bytes [ bpp || AdAr [ AdHu [ CaAr [ CaHu
4h | 2048 11 1601 1580 | 1178 | 1128
4¢ | 2048 13 1926 1865 | 1405 | 1312

o oty g TABLE Il
Ppi=0 PERFORMANCE OFDIFFERENT LOSSLESSCODERSREGARDING LOCATIONS OF

NONZEROELEMENTS [LD: LEVEL-DIRECTION, NZ: NONZERO ELEMENTS, Ad:
ADAPTIVE, Ar: ARITHMETIC, AND Hu: HUFFMAN]

LD | Bytes || NZ | AdAr | AdHu | JBIG | &:1
1lv | 65536 || 948 462 8254 546 | 8192
2uv | 16384 || 6650 | 1369 2469 1554 | 2048
2h | 16384 || 6608 | 1420 | 2464 | 1569 | 2048
3d | 4096 || 3374 | 506 729 646 512
3v | 4096 || 4590 | 511 740 646 512
3h | 4096 || 4566 | 509 742 649 512

~M \[2e 060 . - . .
) where p(v; ;) is the probability of selecting the-D index
i

vectorv; 4;, during the coding of théth concentric lattice in
that subimage. The total estimated entrdpy,, is computed as

3

J
_Zl lZ Rij, anj, ayj, d
i=1 d=1

Rp =~ bpp (30)

2
np

where.J is the depth of the wavelet decompositian,; x y;, 4
is the codebook size for eaehx y subimage, and? is the size
of original image.

oo Joaa (- rg)
t nGid)
)

Ry=
2 nGid)

C. Lossless Compression Algorithms

Lossless compression is chosen for the part of the data which
has high effect on the reconstructed image quality. For the
4h and 4 subimages, we examined several lossless coding
schemes. To adapt to nonstationarity in the data, adaptive
arithmetig adaptiveHuffman and theCALIC (context-based
adaptive lossless image codec) [34] schemes were examined.
Table 1l displays some of the results obtained for a typical
fingerprint image using Johnston-32D filter.

Given the coarse resolution data (lowpassed), the CALIC with
Fig.9. Flow chart for computation of truncation levels,and scaling factors, its Huffman version was found to give the best performance.

s;, for proposed PU-PLVQ algorithm (with discarded data). As described in Section V, the nonzero coefficients of the 1
to 3h subimages are quantized. Consequently, the locations of

Despite a small increase in the computation of the lattice®nzero coefficients must be transmitted as side information.
parameters, the PU-PLVQ algorithm is preferred over thko reduce the required bit rate, the following procedure is pro-
U-PLVQ algorithm given the following advantages: It conposed. First, indices of nonzero elements are mapped to a binary
siders the (nonuniform) joint PDF of input sources, resolvégage with ones in the nonzero locations. The obtained binary
the wedge region problem encountered with pyramidal latticégjages have few nonzero elements which are weakly correlated.
and therefore results in a better performance (see performaiioeencode these binary images, different lossless techniques

comparisons in Section VI). were examined. These included: the JBIG (Joint Bilevel Image
For the PU-PLVQ case, the average information of codebo&kperts Group) [25], adaptive arithmetic coding [16], adaptive
(zeroth order entropy) is Huffman coding [27], squeezing 8 binary bits into 1 compressed

grey-level byte, etc.
Rja=PiRija+(1—P1)Ra jq bpp (28) Table Ill illustrates the performance of different methods (in
bytes) for some of the subimages, for a fingerprint image with

where for each lattic&;_; 4 is obtained using hard thresholding level of 0.067.
I From the results, we note that
1 & . o i -
Rija=— Z p(vi,ii) logs p(vi is) (29) due to the low correlation in th_e data, a simple
Nj,d = zero-memory encoder should be satisfactory;



TABLE IV .
PSNRs AND CPU QosTS FORDIFFERENT DECOMPOSITIONSTRUCTURES 11F . :
SHOWN IN FIG. 1, USING DIFFERENT FILTERS (5% OF BEST COEFFICIENTS ARE BT

Wege |

USeD WITH NO QUANTIZATION ) [EBBBS ENTROPY-BASED BEST BASIS ok ot PR |
SELECTION, OWT. ORDINARY WAVELET TRANSFORM + s FEeT
s Johnst-32D Symmet-16 Coif-18 oF + S 2 7
tructure \~poNE T CPU | PSNR | CPU | PSNR | CPU N
EBBBS 30.77 | 108.3 30.66 | 100.2 30.57 | 107.5 gl 7 £ |
73Subband|| 30.77 | 28.1 30.66 | 23.0 30.59 | 23.8 u i -
64Subband| 30.71 | 28.8 30.60 | 23.5 30.53 | 24.2 - 2 77
OWT 3026 | 7.8 || 30.07 | 5.0 | 2996 | 5.4 Un +57 iy
¥
8 Pl d
+ 7
TABLE V %7 o — PIXXXXXXX
SEVERAL QUADRATURE MIRROR FILTER COEFFICIENTS IN JOHNSTONFILTER, 51 // ——o P2XXXXXXX .
COEFFICIENTS ARELISTED FROM CENTER TOEND [J32 p: JOHNSTON-32D, J PBXXXXXXX
S16: SYMMETRIC-16, C';5: COIFMAN-18 , D, : DAUBECHIES-12 TAP] / * * - pAXXXXXXX
4r: / + + PEXXXXXXX 1
L/
Filter]| Quadrature Mirror Filter Coefficients ¥ ‘ ; ‘ ; ‘ ; i ‘
0.463674 0.132972 -0.099338-0.044524 5 10 s % comessonmaio - ° %
Jasp 0.054812 0.019472 -0.034964-0.007961
0.022704 0.002069 -0.014228 0.000842 Fig. 10. RMSE of different decomposition structures, using different filters
0.008181-0.001969 -0.003971 0.002245 (no quantization).

0.002672-0.000428 -0.021145 0.005386

5. || 0.069490-0.038493 -0.073462 0.515398 : ,
1 11 1.099106 0.680745 -0.086653-0.202648 with root mean square errofRMSE) defined as

0.010758 0.044823 -0.000766-0.004783
-0.002683 0.005503 0.016583-0.046507

N M

i = - - 1 N

0.043220 0.286503 0.561285 0.302983 RMSE = N } : 2 : [f('r% m) _ f(n ’m)]2 (32)
n=1 m=1

Cis ||-0.050770-0.058196 0.024434 0.011229
-0.006369-0.001820 0.000790 0.000329
-0.00005C-0.0000243

. _8-%{13;228?23%2 8-82%3? 88;3332 whgreN andM are the Iengths of _image, arfdand f are the
12 0.031582 0.000553  0.004777-0.001077 original and reconstructed intensities.
The RMSE performance of different structures is displayed
in Fig. 10. Also, theS;¢ family was found to slightly outper-
+ the adaptive Arithmetic coding gave the best performancgym theDaubechies 12ap orthonormal wavelet. Additionally,
* using the proposed technique, the bit requirement for tferent types of biorthogonal filters were used with results
side information to be transmitted has decreased signigihowing the superior performance of the Johnstp- filter.

cantly. The structures shown in Fig. 1 were also evaluated when used
In addition, the indices of lattice codewords as well as thir conjunction with the complete coding process. Implementing
PNM values are adaptive Arithmetic coded. the different structures associated with the Johnston filter, the

obtained wavelet representations were compressed using the
proposed PU-PLVQ algorithm. In this case, as discussed in
VI. EXPERIMENTAL RESULTS Section V, the 4 to 4k subimages were hard thresholded such

0 - )
Both the U-PLVQ and the PU-PLVQ algorithms were impleghat only 5% of the wavelet coefficients (in energy sense) were

mented and tested on a database of 8 BA2 grey-level finger- retained. Table VI shows the res“'“ﬂg PSNRs. .
print images. Tables IV and VI show that despite the very high computa-

First, the performance of the proposed 73-Subband decotlif?-n complexity of the EBBES method, compared to that of the

position structure was investigated. Using a typical fingerprirl?{Oposed fixed 73-Subband decomposition, their performances

image, the performance of different types of five-level decon?—r?: veLy S|m|lar.b ing th f fih d
position structures, shown in Fig. 1, were examined. To remoy! urthermore, by comparing the periormance of the propose

the effect of quantization on the performance of different struZ- -Subband and the FBI's 64-Subband in these tables, one can

tures, the quantization process was not applied. Table IV shoWs that in all cases the 73-Subband outperforms the 64-Sub-

the resultingpeak signal-to-noise ratit®SNR), in decibels, and band while it is go_mputationally less expensive. These Tables
the requirectentral processing un{CPU) time, in seconds, for also show the efficiency of the wavelet packets compared to the

each structure (the CPU times are recorded to give a reIatRféj'nary wavelet transform. )
Subsequently, the performance of the proposed uniform

measure of the computational cost of each structure). The ac= """ i . , ) X
tual filter coefficients are listed in Table V. and piecewise-uniform compression algorithms, at different

For grey-level 8bits per pixel(bpp) images, the PSNR, in bit rates, was compared to that of other prominent image

decibels, is computed as compression algorithms.
First, the average performances of the proposed algorithms

255 when using the root latticeBs andD,, and the integer lattices
PSNE = 20logy 17roms dB (31) 78 andz* were tested. The algorithms were run on a set of 24



TABLE VI
PERFORMANCE OFDIFFERENT DECOMPOSITIONSTRUCTURES SHOWN IN 40
FIG. 1, USING THE PROPOSEDPU-PLVQ ALGORITHM (5% OF BEST
COEFFICIENTS AREUSED) [EBBBS ENTROPY-BASED BEST BASIS SELECTION, 38
OWT: ORDINARY WAVELET TRANSFORM
36
Structure || PSNR (dB) | Bit Rate (bpp, o
EBBBS 30.765 0.1537 g
73-Subband | 30.761 0.1542 z
64-Subband | 30.703 0.1542 "
OwWT 30.199 0.1564
28
42 : T T T T T T 2 PU-PLVQ (ED|)
*/*’,—/’ U-PLVQ (ED)
=T o4k WsQ [2] _
40+ /,,/);/ "_— ' JPEG [32]
a8l //’/:f:i - ;: ;:a«— ¥k o oz os i Y 05 o8
P P : it Rate (bpp)
- . X _*
A 55 * ¥ Fig. 12. Average performance of the proposed algorithms as well as the JPEG
36 R ” e - 1 and the WSQ algorithms, for various bit rates.
& P * o
Sur Rl R 1 TABLE VI
5 L7 . *7 RESULTING AVERAGE PSNRs FROM DIFFERENT ALGORITHMS
o v -
32 ars 7/ * i _ _
AV Bit Rate | JPEG [32] | WSQ [2] | PU-PLVQ [ U-PLVQ
‘s
S 060 || 32384 31.28 40.38 30.27
oK T 045 3118 39.91 39.67 38.40
il / ”/ oooo0 0.30 38.40 27.99 36.58 35.65
4 --- p 57 = G
a8f k& e 00000000 . 0.15 23.40 25.18 31.26 30.78
/) ! - PXXXXXXXXX
2&4// Kmo— ok PAXXXXXXXXX | TABLE VIl
/ 1 1 1 Il Il 1 1 1 1 Il 1
015 02 025 03 035 04 045 05 055 06 065 CPU QsTS OF ASAMPLE FINGERPRINTIMAGE
e e PUPLVQ | U-PLVQ
. - o -
Fig. 11. Average performance of different standard lattices, for fingerprint Bit Rate com. | decorn. | com. 1 decom
images ED: Es& D, root lattices Z: integer lattices]. . M i ‘
0.60 4.16 1.63 2.87 1.32
. _ . . 0.45 349 | 0.98 241 0.92
fingerprint images of size 512 512. The results are shown in 7 éa 576 T 059 216 057
Fig. 11. : . . : -
9 015 | 344 | 034 | 2.03 | 033

Fig. 12 and Table VII shows the average performances of the
proposed algorithms, the standard JPEG [32], and the FBI's
standard WSQ [2]. The same set of images were used for the
proposed algorithms as well as the JPEG algorithm. For the «
WSQ algorithm, the rate-distortion performance reported in
[32] for 512 x 512 fingerprint images was used. The results
obtained from different experiments showed that at low bit *

rates the proposed algorithms with the root lattidas and ges
D, outperform the case with the integer latti&sandz* by g
about 2 dB in most cases (see Fig. 11). 2 PU-PLVQ (4

44+

.

To give a relative measure of the computational cost of the @ o

. | i LR + ACTCQ [19]
proposed algorithms, Table VIII lists the required CPU costs, N SR o0 ACTCQ [20] |.
in minutes, for a sample fingerprint image (using MATLAB o wI Swwe ||
on an UNIX platform). The reported CPU costs comprise all ‘ . ?555?35”

stages of the compression/decompression algorithms, including 2

the wavelet packets.

Fig. 12 and Table VII show the superior performance of the

U-PLVQ (Z)|

ECLVQ [35] |1

L L L L
0.5 0.6 065

. ! 1 1 L

L L
04 045
Bit Rate (bpp)

0.15 0.2 0.25 0.3 0.35

proposed image compression algorithms compared to that of £ 13.  performance of different image compression algorithms, for “Lena”
standard JPEG and the standard WSQ. These results also shage £: integer lattices].

thatthe proposed PU-PLVQ algorithm outperforms the U-PLVQ

algorithm, while the computational cost of the former techniqua the PU-PLVQ decompression algorithm is comparable with
is not significantly higher than the latter, as shown in Table Vlithat of the U-PLVQ decompression algorithm.

Note that the original images are compressed only once, whileTo compare the performance of the proposed algorithm with
theywillbe decompressedfrequentlyinmostapplications. As ctirat of other existing algorithms using other images, the ubig-
be seenfrom Table VIII, evenwith MATLAB codes, the CPU coatitous “Lena” image 51 512 was also encoded. Using this



Fig. 15. (a) Original image. Reconstructed images with 20:1 compression
(0.4 bpp); (b) proposed PU-PLVQ (40.10 dB); (c) WSQ (31.41 dB); and (d)
JPEG (29.52 dB).

Fig. 14.
(b) PU-PLVQ: 41.28 dB; (c) PU-PLVQ: 29.96 dB; (d) U-PLVQ: 39.26 dB; (€) |
U-PLVQ: 29.58 dB; (f) JPEG: 30.95 dB; and (g) JPEG: 21.50 dB. »

; ; ) ig. 16. (a) Original image. PSNRs for 20: 1 (0.40 bpp) and 53:1 (0.15 bpp),
image, the PSNRs obtained from the JPEG., Barlaud’s [12], g proposed PU-PLVQ algorithm: (b) 34.98 dB: and (c) 28.07 B,
the proposed PU-PLVQ and U-PLVQ algorithms for 0.17 bpp,

were 27.72 dB, 30.3 dB, 36.95 dB, and 36.26 dB, respective||¥. . -
ig. 16 shows an enlarged portion of an original and a recon-

Fig. 13 shows the performance of the proposed algorithms %ructed image of a typical fingerprint image, at compression
well as that of several prominentimage compression algorithr% 9 yp gerp 9¢, P

[19], [20], [29]-[32], [35] when encoding this image. ratios of 20:1 and 53:1.
Figs. 14 and 15 demonstrate the quality of the reconstructed
images obtained using different algorithms, at various bit rates.
Also, to show that the fidelity of the minutiae is preserved A new compression algorithm (with two variations) adapted

during the proposed compression/decompression algorithim fingerprint images is introduced. A modified wavelet packet

VIl. CONCLUSION
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