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Abstract

The ubiquity of broadband digital communications and mass storage in modern

society has stimulated the widespread acceptance of digital media. However, easy

access to royalty-free digital media has also resulted in a reduced perception in

society of the intellectual value of digital media and has promoted unauthorized

duplication practices. To detect and discourage the unauthorized duplication of

media, researchers have investigated watermarking methods to embed ownership

data into media. However, some authorities have expressed doubt over the efficacy

of watermarking methods to protect digital media.

This paper introduces a novel method to discourage unauthorized duplication

of digital images by introducing reversible, deliberate distortions to the original

image. The resultant image preserves the image size and essential content with

distortions in edge and color appearance. The proposed method also provides an

efficient reconstruction process using a compact key to reconstruct the original image
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from the distorted image. Experimental results indicate that the proposed method

can achieve effective robustness towards attacks, while its computational cost and

quality of results are completely practical.

Key words: Copy Protection, Color Image Processing, Principal Component
Analysis, Recoloring, Watermarking.

1 Introduction

The Internet provides an entertainment and informational resource, rich with

audio, images and video. While much of the resources on the Internet are

recognized as “free”, the modern Internet is also a market for businesses sup-

plying and distributing their digital media. With recent developments and

price positioning in digital media equipment, the Internet provides an ideal

medium for the distribution of digital media. However, the same developments

in broadband communications and mass storage hardware also provide oppor-

tunities for the unauthorized duplication and distribution of digital media.

The reasons which make the Internet so persuasive as a distribution medium

are also the concern when protecting intellectual property.

Over the last decade, much research has concentrated on the protection of digi-

tal media against unauthorized duplication and distribution [1]. The most rec-
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ognized method in the field is watermarking [2]. In the watermarking method,

authorization data is added to the original data to help identifying the owner.

Over the last decade, many interesting and original methods have been pro-

posed for adding watermarks to digital media [3–15]. Unfortunately, equally

interesting and original methods have been proposed for circumventing the

protection offered by these watermarking methods. In fact, the equal develop-

ment of cheating methods makes it undoubtable that for any watermarking

method there are generally affordable methods of attack to corrupt the wa-

termark or embed another watermark [16]. The robustness of different water-

marking methods against attack has been considered by many researchers [17–

20]. Table 1 compares a few typical watermarking methods in terms of attack

resistance. A survey on security scenarios in music watermarking and their fail-

ure has been published [21]. The competing sides of watermarking technologies

has prompted NASA experts to publish guidelines for image protection meth-

ods with a statement advising to “never expose an image in its large size”,

and suggesting to use “visual watermarks” and “programming shields” [22].

Recently, the efficacy of watermarking methods has been criticized by senior

members of the image processing community [23]. After Herley ’s controver-

sial note on watermarking entitled“Why Watermarking is Nonsense” [23],

researchers emphasized that this immature field of signal processing is “over-

sold” and that no method has yet been able to claim “the ability to protect

from all possible future attacks” [24,25]. M. Barni comments,“Why should we

hide the information within the data, when we could more easily use headers
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or other means to reach the same goal?” [26].

In response to public criticism, watermark researchers currently emphasize

applications with less-restrictive requirements and forward to emerging tech-

niques to solve the fundamental problems [25]. In a very different approach,

a few researchers have worked on direct copy detection [27], but it is also not

yet a stable practical tool.

Of all digital media, digital image hardware has seen the greatest technological

developments over the recent years. The cost of consumer and professional

digital camera equipment and duplication hardware has improved to the point

where digital images are considered comparable with traditional film. The

distribution and protection of commercial digital images presents additional

requirements to copy protection methods. This paper considers methods for

protecting digital images.

The traditional practice for the distribution of commercial images involves

sending down-sampled, cropped or visually-watermarked images for customer

evaluation. When the customer chooses to purchase the images, the original,

high-quality images are provided to replace the evaluation images. In this

approach, the discarded information available in the evaluation images and

the bandwidth consumed in acquiring these images is wasted. This paper

proposes a method which permits the original images to be regenerated using

a small-sized key, and ultimately results in improved bandwidth efficiency.
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The evaluation images are intentionally manipulated to maintain the visual

content, while containing many fake edges and color alterations to make it

inappropriate for unauthorized professional distribution. The original images

are registered with the application of a small-sized key. The primary benefit

of the proposed method is that the original image is efficiently reconstructed

in a lossless framework.

The proposed method manipulates regions on homogeneous image texture

for protection against unauthorized duplication and distribution and extends

the method of principal component analysis (PCA) [28]. Processing meth-

ods derived from the PCA technique have been shown to exhibit improved

classification in color images compared to well–known techniques such as the

fuzzy C–means (FCM) [29]. Previous work has also developed a fast PCA–

based color transfer method to recolor an image using the color information

extracted from a reference image [30].

The proposed method assumes color images as vector geometries and applies

vectorial tools on them. This approach contrasts with the general approach

of considering color images as a set of parallel gray–scale images or using

standard color spaces [31–33]. A technique for describing homogeneous tex-

tures within an image based on PCA called linear partial reconstruction error

(LPRE) has been proven to be a powerful representation [34]. [Add a sen-

tence explaining this why.] The LPRE algorithm has been used as the basis of

an algorithm called fuzzy principal component analysis–based clustering (FP-

5



CAC), for the classification of image texture and has proved its superiority

over the commonly used Euclidean and Mahalanobis likelihood distance–based

approaches [35,36].

The rest of this paper is organized as follows: Section 2 introduces the pro-

posed copy protection method. It discusses the proper likelihood measurement

function for color fields and briefly reviews the fuzzy companion of the PCA

(called FPCA). FPCA algorithm is used in a clustering method called FPCAC

and introduces a PCA–based recoloring method and incorporates the different

approaches in the proposed color image copy protection algorithm. Section 3

holds the experimental results, and Section 4 concludes the paper.

2 Proposed Method

In this section, we first review some preliminary concepts of PCA-based anal-

ysis of color images, the classification of homogenous color regions and the

efficient representation of homogeneous textures.

2.1 PCA–Based Color Image Processing

PCA considers a color image as vector geometries and applies vectorial tools

on them.

When attempting to analyze random variables of dimensions more than unity,

there are several choices for the vector–to–set metric. A careless selection in
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this stage can decline the performance of the subsequent stages. The classic

distance functions, such as Euclidean and Mahalanobis, are frequently used in

available approaches. But recent research has shown that neither of them can

be considered as the optimal choice for all physical phenomena.

It is mathematically proven [37] and empirically experimented [34,36] that the

best available distance function for the sets of 3–D color vectors in the RGB

color space is the linear partial reconstruction error (LPRE) defined as,

τ(�c, C) = ‖(�c − �ηC) − �vT
C(�c − �ηC)�vC‖2. (1)

in which C is the set of color vectors and �c is a single color realization. Also,

�ηC and �vC are the expectation vector and the first principal direction of C,

respectively.

Here, we give an illustrative example for comparing the performance of the

LPRE–based query extraction in color images with the results of the same op-

eration applied when using the Euclidean and Mahalanobis–based distances

(see Figure 1). Query region extraction is the process of finding the region

similar to a given query. Note the superiority of the LPRE–based approach

compared with the two other distances in Figure 1. Interested reader can find

more examples of LPRE–based query region extraction in [38]. Also, see [36,35]

for the performance comparison of the LPRE with the Euclidean and Maha-

lanobis distances for other image processing applications.

7



2.2 Fuzzy Principal Component Analysis (FPCA)

Consider the problem of finding the principal components of the fuzzy set

X̃ = {(�xi; pi)|i = 1, · · · , n}. It is proved in [35] that computing the fuzzy

expectation vector as,

�ηX̃ =
1∑n

i=1 pi

n∑
i=1

pi�xi, (2)

and the fuzzy covariance matrix as,

CX̃ =
1∑n

i=1 pi

n∑
i=1

pi(�xi − �ηX̃)T (�xi − �ηX̃), (3)

yields a perfect dual of PCA for fuzzy sets. In this way, the fuzzy principal

directions of X̃ are the eigenvectors of CX̃ sorted by the corresponding eigen-

values in an ascending fashion. Also, the PCA matrix of X̃ come from the

singular value decomposition (SVD) of CX̃ .

2.3 Fuzzy Principle Component–Based Clustering (FPCAC) of Color Vectors

Consider the general clustering problem stated as minimizing the objective

function defined as,

J(X, Φ) =
n∑

i=1

C∑
j=1

pm
ij Dij. (4)

This problem describes the best choice for clustering the members of the set

X = {�x1, · · · , �xn} into C clusters described as Φ = {φ1, · · · , φC}. Here, pij is

the fuzzy membership of �xi to the j–th cluster and Dij is the distance from
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�xi to the j–th cluster. Here, m > 1 is the fuzziness parameter. Assume that

Dij = Ψ(�xi, φj) is the appropriate distance function for the vector geometry

under investigation. As an example, as discussed in Section 2.1, the LPRE is

the proper distance for color vectors. Here, φj is the defining parameters of

the j–th cluster, according to the general cluster model. Again, as an example

in the LPRE methodology, φj = [�ηj, �vj].

Assume that the function Υ tunes the cluster model φj to best fit a fuzzy

set of vectors. This means that for the fuzzy set of vectors X̃ = {(�xi; pi)|i =

1, · · · , n},

Υ(X̃) = argφ min

{
n∑

i=1

piΨ(�xi, φ)

}
. (5)

Therefore, the function Υ(X̃) ≡ Ẽ{X̃} is the companion for Ψ(�x, φ) = ‖�x −

�η‖2. Here, Ẽ{X̃} stands for the fuzzy expectation of a fuzzy set. Also, the

FPCA introduced in Section 2.2 gives the Υ(X̃) function corresponding to

the Ψ function defined as the LPRE [35].

Back to the main problem of minimizing J(X, Φ), assume that we have the

dual functions Ψ(·) and Υ(·). In [35], the authors proposed an algorithm that

converges to a minimal point of J(X, Φ), if at least one exists. The Pseudo–

code for this algorithm is given below,

• Aim: Clustering data according to the given model.
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• Inputs:

· Appropriate distance function Ψ and its dual Υ.

· Set of realizations X = {�x1, · · · , �xn}.

· Number of clusters C.

· Fuzzyness m.

· Halting threshold δ.

• Output:

· Fuzzy membership values pij, 1 ≤ i ≤ n, 1 ≤ j ≤ C.

· C cluster descriptors φ1, · · · , φC.

• Method:

1 l = 0.

2 Randomize φ1, · · · , φC.

3 l = l + 1.

4 Compute distances as Dij = Ψ(�xi, φj).

5 Compute fuzzy membership values as (6).

6 Store the fuzzification scheme as pij = Flji.

7 Renew clusters as (7).

8 if l > 1 compute δl as (9).

9 if l = 1 then goto 3, elseif δl > δ then goto 3 else return.

As shown at the above, the first step is to randomize a set of initial cluster

descriptors φ1, · · · , φC . Then, for all i = 1, · · · , n and j = 1, · · · , C the distance

from �xi to the j–th cluster is computed as (Dij = Ψ(�xi, φj)). As proved in [35],

the pij should guide J(X, Φ) to reach its minimum point, by:
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pij =
D

− 1
m−1

ij∑c
k=1 D

− 1
m−1

ik

. (6)

Then, each cluster should be rearranged to best fit the renewed fuzzy set.

φj = Υ

({
(�xi, p

m
ij )|i = 1, · · · , n

})
. (7)

This process iterates between finding Dij, computing pij, and rearranging the

clusters, until its convergence.

The halting condition of the algorithm is the stationarity of the fuzzy member-

ship maps. Assume that the algorithm has passed through 1 iteration. Also,

assume that Fijk is the membership of �xk to the j–th cluster in the i–th itera-

tion. Now, the difference between the result of the i–th iteration and the j–th

iteration is defined as,

δi,j =

√√√√ 1

WHc

n∑
k=1

C∑
l=1

(Filk − Fjlk)2. (8)

Also, the repeatedness of the result of the l–th iteration is defined as,

δl = min
{
δl,1, · · · , δl,l−1

}
. (9)

Now, the condition for ending the iterations is δi < δ, where δ is a predefined

threshold. In this paper, we use δ = 0.05; which means that the algorithm

will stop iterating when the fuzzy membership values repeat with less than

5% variation.

Along with the FCM [29], other clustering approaches like Gustafson–Kessel
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(GK) [39], fuzzy elliptotypes clustering (FEC) [40], and fuzzy C–varieties (FCV) [41],

are also special cases of the proposed general clustering method. See [35] for

further details and mathematical discussions. Figure 2 illustrates a sample run

on an artificial 2–D data using the LPRE distance.

Using the clustering procedure proposed above with the LPRE methodology,

a color clustering tool is produced [35]. It must be emphasized that this for-

mulation results in a special case of the FCV (r = 1) [40]. We call this method

fuzzy principal component analysis–based clustering (FPCAC).

When feeding an image I into the FPCAC process (with preselected values for

C and m), the result is a set of C fuzzy maps J1, · · · ,JC . Here, Jixy denotes

the level of membership of �Ixy to the i–th cluster. Note that,

∀x, y,
C∑

i=1

Jixy = 1. (10)

In this paper, we change the fuzzy maps J1, · · · ,JC into binary (crisp) maps

J̄1, · · · , J̄C using maximum likelihood. As such,

J̄ixy =




1 ∀j �= i,Jjxy < Jixy

1 ∀j < i,Jjxy < Jixy & ∀j > i,Jjxy ≤ Jixy

0 otherwise.

. (11)

The complexity in definition of (11) is to compensate for the cases that for a

single pair of x and y, there are distinct values of i and j, for which Jixy = Jjxy.

As in this paper the binary FPCAC is utilized, we assume that the membership

maps are binary ones, without emphasizing that a maximum likelihood has

passed over them. Figure 3 shows some examples for applying the FPCAC
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method on some sample images. These results are produced using m = 1.2

with values of C = 3, 4, 3, 2. The algorithm has converged in 14, 11, 12, and 9

successive iterations, elapsing 5.4s, 5.5s, 4.2s, and 1.9s, respectively.

2.4 Color Image Recoloring

Assume that we have two homogenous swatches of S1 and S2. Also, assume

that �η1, �η2, V1, and V2 denote the expectation vectors and PCA (or FPCA)

matrices of S1 and S2, respectively. Now, compute the vector �c2 for the arbi-

trary vector �c1 in S1, as,

�c2 = V2V
T
1 (�c1 − �η1) + �η2. (12)

The vector �c2 is the recolorized version of �c1 according to the reference swatch

of C2. Having �c2, the vector �c1 is reconstructed as,

�c1 = V1V
T
2 (�c2 − �η2) + �η1. (13)

The above scheme is a PCA–based single–swatch recoloring process introduced

in [30].

Figure 4 illustrates a sample result of the above method. Figures 4–a and 4–b

show the source and the reference images, respectively. Both images contain

two homogenous swatches which are given by the user to guide the recoloring

process. Figures 4–c and 4–d illustrate the fuzzy membership maps of the

source image according to these two swatches. Figures 4–e and 4–f show the
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single–swatch recoloring results and Figure 4–h shows the final result of the

recoloring process. The total time elapsed on producing this result is 1.8s. Note

the high quality of the resulting image along with its low computational cost.

Also, note the naturalistic contact of the sky and grasses at the horizon. In this

paper, we only use the single–swatch recoloring results shown in Figures 4–e

and 4–f.

2.5 Polarization and Depolarization

There is a manipulated form of the common Euler angles that relates any

right–rotating orthonormal matrix (such as Vij) with three angles, in a one–

to–one revertible transform [42].

A right–rotating orthonormal matrix is an orthonormal matrix which satis-

fies, (�v1 × �v2) · �v3 > 0, where, × and · represent outer and inner products,

respectively. Here, vi is the i–th column of V. As such, for the right–rotating

orthonormal matrix V we write V ∼ (θ, φ, ψ) when,

θ = � (�vxy
1 , [1, 0]T ), (14)

φ = �
(
(Rxy

θ �v1)
xz, [1, 0]T

)
, (15)

ψ = �
(
(Rxz

φ Rxy
θ �v2)

yz, [1, 0]T
)
. (16)

Here, � (�v, �u) denotes the angle between two vectors �v, �u ∈ R2, computed as:
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� (�v, �u) = sgn((�v × �u) ·�j) cos−1 �v · �u
‖�v‖‖�u‖ , (17)

where sgn(x) is the signum function, defined as:

sgn(x) =




1, x > 0
0, x = 0
−1, x < 0

. (18)

In (14), (15), and (16), �vp denotes the project of the vector v on the plane p.

Also, Rp
α is the 3× 3 matrix of α radians counter–clock–wise rotated in the p

plane:

Rxy
θ =


 cos θ − sin θ 0

sin θ cos θ 0
0 0 1


 , (19)

Rxz
φ =


 cos φ 0 − sin φ

0 1 0
sin φ 0 cos φ


 , (20)

Ryz
ψ =


 0 cos ψ − sin ψ

1 0 0
0 sin ψ cos ψ


 . (21)

One can prove that,

Ryz
ψ Rxz

φ Rxy
θ V = I. (22)

Hence, to produce V out of the triple (θ, φ, ψ) one may use,

V = Rxy
−θR

xz
−φR

yz
−ψ. (23)

Note that (Rp
α)−1 = Rp

−α.
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Then, while equations (14), (15), and (16) compute the three angles θ, φ, and

ψ out of V, equation (23) reconstructs V from θ, φ, and ψ. These methods are

called polarization and depolarization of a right–rotating orthonormal matrix,

respectively [42].

2.6 Color Image Copy Protection

Figure 5 shows the flowchart of the proposed visual encryption/decryption

method. Here, for the given image I◦, the encryption block produces the

encrypted demo image Ĩ. It is done in a manner that Ĩ visualizes the con-

tents of I◦ while containing deliberately embedded distortions that prevent

an unauthorized consumer to use it for professional applications. When the

authorization is performed, the key K is given to the user. Using K and Ĩ,

the image I is reconstructed so that it perfectly duplicates the original image

I◦. The main contributions of the proposed method are its robust protection

against unauthorized duplication and distribution, the low elapsed time for

encryption/decryption, high quality of the reconstructed image, and the low

redundancy of K over I◦.

Assume that the original H ×W image I◦ is to be encrypted by the proposed

method. As shown in Figure 5, the FPCA clustering method is performed

on I◦. The results are a set of C color classes φi = [�ηi,Vi] for i = 1, · · · , C

along with C, H × W binary membership maps J1, · · · ,JC . For each value of

i, the vector �ηi is the fuzzy expectation vector of the color vectors in the i–th
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cluster [35]. Also, the Vi is the FPCA matrix of the i–th cluster [35].

The FPCAC process depends on the fuzziness parameter (m) with default

value of 1.05 for natural color images [35]. As here we do not expect a sat-

isfactory classification (in fact, we prefer some levels of degradation), the m

value can be freely selected (m > 1). We propose to select m randomly using,

m = 1 +
∣∣∣N(0, 1)

∣∣∣, (24)

where N(0, 1) is a zero–mean, unit–variance Gaussian random variable. In

fact, m enables the proposed method to give any number of encrypted version

of a single image that is needed. Each encrypted image needs its own key to

be unleashed. We will show this ability in Section 3.

Here, our main concern is to recolor a given image in an unsupervised manner

such that the image content remains understandable, while its quality degrades

considerably. Thus, we propose a disturbing multi–swatch recoloring algorithm

that is reversible. Assume producing the H×W index map J with its elements

being members of {1, · · · , C}. As such, Jxy = i iff Jixy = 1. As described in

Section 2.3, there is one and only one choice for J. Using the single–swatch

recoloring method discussed in Section 2.4, we construct the encrypted image

as,

�̃Ixy = UiV
T
i (�I◦xy − �ηi) + �ρi, i = Jxy, (25)

where [�ρi,Ui] for i = 1, · · · , C are a set of color descriptors and x and y are

image coordinates. We will return to the above color descriptors later. For
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now, it suffices to know that �ρi is a 3 × 1 vector and Ui is a 3 × 3 unitary

matrix.

In fact, in (25) each color vector is transferred from the color descriptor to

which it mostly belongs to a second color descriptor. Having J and [�ρi,Ui]

for i = 1, · · · , C, the original image is reconstructed from Ĩ. Hence, J and

{[�ρi,Ui]|i = 1, · · · , C} produce the key (K). The J is a large image and occu-

pies memory, but due to its content, conventional lossless binary compression

methods are highly efficient for compressing it. Furthermore, we propose to

apply a convolution kernel of radius r on the membership map of the FPCAC,

prior to the maximum likelihood process. This is done to produce an index

map with more smoothed edges. This will result in an index map with a few

holes and less isolated pixels (that declines the performance of the run–length

coding).

Also, we propose to compute the redundancy of the key as its volume in

compressed format over the volume of the whole image. Thus, the redundancy

of the key K over the H × W image I◦ is denoted by ε and is computed as,

ε =
‖K‖
‖I‖ =

‖K‖
3HW

, (26)

where ‖X‖ denotes the volume of X in bytes and K contains [�ρi,Vi]s and J.

One problem that arises here is that the Ĩ computed in (25) may contain

values out of the range of [0, 255]. As the result of encryption is saved in

one of the standard color image formats (1 byte per pixel), these truncations
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produce artifacts in the results of decryption. Thus, we propose to apply a

linear mapping on Ĩ and to send the parameters of the mapping, which are a

bias and a scale, to the decryption stage.

The decryption process is performed in an straightly inverse fashion. Note

that, theoretically, the process is completely reversible. We show (by examples)

that except for numerical errors, no information is lost during the encryption–

decryption process.

Now, lets go back to the reference color descriptors ([�ρi,Ui] for i = 1, · · · , C).

In fact, as the proposed visual encryption method is making fake edges, it

is very important to alter the color appearance of the image deliberately. We

propose to use a bank of homogenous swatches for this purpose (see Figure 6).

Assume that the bank contains k swatches with the color descriptors of [�ρi,Ui]

for i = 1, · · · , k. The correspondence table in Figure 5 holds an index to this

bank for each cluster. The elements of this table are produced by a proposed

matching process which compares two color descriptors. The comparison is

performed using a weighted Euclidean distance incorporating the expectation

vectors and the polarized version of the PCA matrices discussed in Section 2.5.

Doing as such, the distance between a cluster of the image (with expectation

vector of �η and FPCA matrix of V) and a homogenous swatch in the bank

(with expectation vector of �ρ and PCA matrix of U) is defined as,

δ2 =
1

4π2

[
(θV − θU)2 + (φV − φU)2 + (ψV − ψU)2

]
+

1

2552
‖�η − �η‖2. (27)
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The 1/4π2 and 1/2552 coefficients are added to map both angles and color

values to the range [0, 1]. So, for each cluster, a proper homogenous swatch

is selected and its descriptor is used to encrypt the image and is also sent

to the decryption process to decrypt the true color vectors. Section 3 holds

experimental evaluation of the proposed method.

3 Experimental Results

The proposed algorithm is developed in MATLAB 6.5, on a PIV 2600 MHz

personal computer with 512 MB of RAM. In practice, WinZip 7.0 SR-1 (1285)

by Nico Mark Computing, Inc. is used as the compression process for the key.

Figure 6 shows the homogenous swatch bank used in this work. The bank

contains 49 swatches manually extracted from some color images captured by

an A60 Canon digital camera. The images are acquired from the natural and

artificial objects in daylight or with flash. No other specific constraints are

fulfilled. The color descriptors of the swatches of the bank are saved in a .mat

file occupying 6, 184 bytes of memory (in non–compressed format). After this

stage, the swatches are not used and the extracted color information are used.

Figure 7 shows some sample images used in this study. All these images are

adopted from color transfer literature. In different experiments, it is proved

that the actual number of clusters of the FPCAC is not affecting the perfor-

mance of the algorithm. In this paper, we illustrate samples relating to the

case of C = 3, but similar results are obtained for other values of C. In fact,
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no user supervision is needed for determining the actual value of C. Note that

the actual value of C is a secured parameter, which blocks cheating attempts.

The radius of the convolution kernel in all experiments is set to 5. There is no

other parameters in the proposed method to be selected by the user. Hence,

the method is a fully unsupervised approach.

The proposed encryption/decryption process is performed on images shown

in Figure 7. The peak signal-to-noise ratio (PSNR) is computed between the

original images and the decrypted images. Also, the redundancy of the key is

computed. Two elapsed times are measured, t1 is the time needed to encrypt

an image and t2 is the time needed to decrypt it. Numerical information are

listed in Table 2. In this experiment, we have fixed the value of m equal to

1.05. It is observed in this experiment that in all cases, the PSNR is above

45dB. Note that, as indicated recently, PSNR values of above 38dB are visu-

ally satisfactory even for professionals [43]. Figure 8 and Figure 9 show the

encrypted and decrypted images, respectively. Note the distorted pattern of

edges in the pavement, sky, and grass regions in Figures 8–a, 8–b and 8–c. Also,

note that in all encrypted images while the contents of the image is readable,

it is made unrealistic and unsatisfactory for unauthorized distribution. Also,

note the perfect quality of the reconstructed images in Figure 9. None of the

intentionally produced artifacts are visible in reconstructed images. Also, the

redundancy of the key is less than 2% in all cases and the elapsed time for

a set of encryption and decryption stages is 15s averagely (always less than

20s). The interesting feature is that, averagely, 75% of the computational load
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is for the supplier, which can have specialized acceleration tools to boost the

performance.

Figure 10 illustrates the sequential results of the proposed method. In this

figure, Figure 10–a shows the original image, Figure 10–b shows the results

of FPCA clustering, and Figure 10–c shows the encrypted image. Then, Fig-

ure 10–d shows the results of decryption. In this example, m = 1.29 and we

have t1 = 7.7s and t2 = 1.7s. The resulting PSNR is 45dB and the redundancy

of the key is less than 0.9%.

The important question here is the security of the proposed method. It is not

enough to know m to infer the code of an image. This is based on an interesting

feature of the FPCA clustering method. In fact, FPCAC is not a repeatable

operation. This is theoretically trivial because FPCAC starts from an entirely

random set of clusters. Figure 11 shows the results of 9 runs of FPCAC on a

single image with a unique set of parameters (C = 3, m = 1.2). Table 3 lists

the mean square distance between different clustering results. This table shows

that there is averagely 16% difference between the clustering results of the

same image, compensated for switched clusters. Another interesting feature is

that only three pairs are more than 95% alike (a–e, b–i, and f–g). As such,

in 9 trials, 6 distinct clustering results are encountered. We emphasize that

here we have assumed that the attacker knows C and m, lacking knowledge of

which makes cracking the code ultimately harder. Figure 12 shows 9 different

encryptions of a single image with different values of m.
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Here, we examine a scenario for attacking the proposed encryption method.

Assume that the attacker has an encrypted image and a key to a different

encryption of that image, and wants to use the key in place. In the worst

situation, assume that the two encryptions share the same values of C and

m. Figure 13 illustrates this situation. With the desperate results of this ex-

periment (switched code resulted in PSNR < 12dB), the high security of

the proposed method is clear. The reader should be aware that the difference

between two distinct encryption of a single image mainly relies on the differ-

ent results of the FPCAC. Hence, in a practical system, having the history of

encryption will help to avoid producing a similarly–repeated encryption. This

will eventually result in maximum security of the proposed method.

We have not discussed the cracking attempt which depends on cheating the

index map and the color descriptors manually. We believe that according to

the complexity of producing an image–sized indexed map, this is a dead end.

Also, note that as the edges of the index map are completely merged with

the edges of the original image, it is impractical to even re–engineer the index

map by manual efforts.

4 Conclusion

With the recent developments in digital communications and the ease of access

to multimedia resources, the need for protection against unauthorized dupli-

cation and distribution of digital media has arisen. In this paper, a novel and
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efficient unsupervised color image copy protection method is proposed and

analyzed. In contrast with the commonly used watermarking approaches that

embed the owner authentication data into the original data, the proposed

method applies reversible deliberate distortions in the original image. This

method permits the efficient reconstruction of the original from and evalua-

tion image which is not appropriate for professional distribution. Furthermore,

while almost all of the available watermarking methods are not resistant to

obvious attack, the proposed method prevents unauthorized distribution and

gives a higher confidence to true ownership of digital media. The method is

also fast and reliable.
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Table 1
Attack resistance performance of some typical watermarking methods (adopted
from [42]). –: Not Resistant. ∼: Marginally Resistant.

√
: Completely Resistant.

[Abbreviations: LG: Linear Geometrical Transformation, NLG: Nonlinear Geomet-
rical Transformation, LPO: Linear Point Operations, NLPO:Nonlinear Point Op-
erations, SO: Spatial Domain Operations, EO: Editing Operations, CMP: JPEG
Compression].

Method [2] [46] [47] [5] [4] [48] [49] [50] [51] [52] [6]

LG ∼ √ ∼ ∼ ∼ √
–

√ √ ∼ ∼
NLG – – – – – – – – – – –

Attack LPO – – – ∼ – – – – – – –

Type NLPO – ∼ ∼ ∼ ∼ ∼ – ∼ – – ∼
SO – ∼ ∼ ∼ ∼ ∼ – ∼ ∼ ∼ ∼
EO – – – – – – – – – – –

CMP
√ √ √ √ √ √ ∼ √ √ √ √

Table 2
Numerical results of proposed algorithm performed on images shown in Figure 7.
[m: Fuzziness. t1 Encryption time. t2 Decryption time. PSNR after reconstructing
the image. ε Redundancy of key.]

Image Size m t1 t2 PSNR ε

7–a 482 × 683 1.05 8.9s 2.8s 45.3dB 0.81%

7–b 896 × 602 1.05 14.9s 5.2s 46.6dB 0.60%

7–c 896 × 602 1.05 16.4s 5.1s 46.9dB 0.73%

7–d 600 × 450 1.05 8.2s 2.6s 45.7dB 1.69%

7–e 600 × 450 1.05 10.8s 2.7s 45.0dB 1.30%

7–f 680 × 448 1.05 8.8s 3.0s 45.2dB 0.73%
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Table 3
Mean square distance between different clustering results of a single image with
a unique set of parameters. Values less than 0.05 are written in bold. Images are
shown in Figure 11.

Trial (a) (b) (c) (d) (e) (f) (g) (h) (i)

(a) 0 0.23 0.091 0.17 0.0042 0.14 0.12 0.21 0.23

(b) 0.23 0 0.23 0.17 0.23 0.21 0.23 0.059 0.00063

(c) 0.091 0.23 0 0.12 0.093 0.086 0.088 0.25 0.23

(d) 0.17 0.17 0.12 0 0.17 0.19 0.2 0.17 0.17

(e) 0.0042 0.23 0.093 0.17 0 0.14 0.13 0.21 0.23

(f) 0.14 0.21 0.086 0.19 0.14 0 0.024 0.22 0.21

(g) 0.12 0.23 0.088 0.2 0.13 0.024 0 0.23 0.23

(h) 0.21 0.059 0.25 0.17 0.21 0.22 0.23 0 0.059

(i) 0.23 0.00063 0.23 0.17 0.23 0.21 0.23 0.059 0
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(a) (b)

(c) (d)

Fig. 1. Query region extraction using different distance functions. a) Original image.
b) Euclidean. c) Mahalanobis. d) LPRE.
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Fig. 2. Results of applying the proposed clustering method on an artificial 2–D data
cloud using the LPRE distance. (a) Input data. (b) Resulted clusters and the path
of clusters for convergence.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 3. Results of the FPCAC method on some sample images. Top) Original images.
Bottom) Results of FPCAC. (a) and (b) Courtesy of Kodak PhotoCD (PCD0992).
(c) Courtesy of Ohio State University. (d) Lena, Courtesy of Signal and Image
Processing Institute at University of Southern California.
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Fig. 4. Illustrative sample for PCA–based recoloring. (a) Source image. (b) Reference
image. (c) and (d) Fuzzy membership maps. (e) and (f) Results of single–swatch
recoloring. (g) Final result.
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Fig. 6. Homogenous swatch bank.
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(a) (b)

(c) (d)

(e) (f)

Fig. 7. Some sample images. (a) Vincent van Goghs Cafe Terrace on the Place du Fo-
rum, Arles, at Night, Arles, September 1888, oil on canvas, image from the Vincent
van Gogh Gallery, http://www.vangoghgallery.com. (b) and (c) Courtesy of Oliver
Deussen. (a), (b), and (c) Adopted from [44]. (d) “Mc. Cormic Creck State Park,
Indiana ” by Mike Briner, mbphoto@spraynet.com, www.mikebrinerphoto.com. (e)
“Hanging Lake” by Brent Reed, brent@reedservices.com. (f) Adopted from [45].
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(a) (b)

(c) (d)

(e) (f)

Fig. 8. Encrypted versions of the images shown in Figure 7, using proposed algo-
rithm.
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(a) (b)

(c) (d)

(e) (f)

Fig. 9. Decrypted versions of the images shown in Figure 8, using proposed method.
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(a) (b)

(c) (d)

Fig. 10. Sequential results of proposed algorithm. (a) Original image, courtesy of
Kodak PhotoCD (PCD0992). (b) Results of FPCA clustering. (c) Encrypted image.
(d) Decrypted image.
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(g) (h) (i)

Fig. 11. Results of applying FPCAC with a unique set of parameters on a single
image for 9 different runs. Original image, courtesy of Signal and Image Processing
Institute at University of Southern California.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 12. Different encryptions of a single image.
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(a)

(b) (d) (f)

(c) (e) (g)

Fig. 13. Decryption an image with an invalid key when C and m are known. (a)
Original image. (b) and (c) Results of FPCAC. (d) and (e) Decryption with correct
keys. (f) and (g) Decryption with invalid (switched) keys.
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