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Abstract— Analysis of the multi–spectral remotely–sensed im-
ages of the areas destroyed by an earthquake is proved to be a
helpful tool for destruction assessments. The performance of such
methods is highly dependant on the preprocess that registers the
two shots before and after an event. In this paper, we propose
a new fast and reliable change detection method for remotely–
sensed images and analyze its performance. The experimental
results show the efficiency of the proposed algorithm.

Index Terms— Remote sensing, registration, fuzzy optimiza-
tion, change detection, texture analysis.

I. INTRODUCTION

In recent years, the spatial and the spectral resolution of the
remotely sensed sensors and the revisiting frequency of the
satellites, has been extensively increased. These developments,
has offered the possibility of addressing new applications of
remote–sensing in environmental monitoring. On the other
hand, the officials are getting more and more aware of using
multi–spectral remotely–sensed images for regular and effi-
cient control of the environment [1], [2].

Change detection of remotely-sensed images can be viewed
as a general case of a global motion estimation usually used in
the video coding applications. However, the following should
be noted.
• In video coding applications, objects are likely to be pre-

sented in the next frame unless we have occlusions, newly
appeared objects, lightning changes, or when dealing with
degraded images. But, in remote sensing applications for
situations such as earthquake, we are faced with very
sever situations in which large areas are likely to be
totally destroyed.

• In video coding applications, the temporal rate is about
30 frames per seconds and thus one can benefit from
the existing high temporal redundancy between succes-
sive frame (when there is no shot change), while in
remote sensing applications the time interval between
two captured multi-band images can be considerably long
resulting in a very low temporal redundancy.

• In video coding applications, the segmentation and mo-
tion estimation stages can in done in a crisp fashion, while
in remote sensing applications because of the different
range of changes that might exist between two shots
the decisions should be made in a fuzzy fashion to take
advantage of its membership style soft decisions.

• In remote sensing applications, the size and the number of
the multi-spectral images are much higher than those in

video sequences and thus even after dimension reduction
processes we still need to have very fast algorithms.

• In remote sensing applications, due to the geometri-
cal changes in image capturing conditions, sensor type
changes, and the long interval among captured images
an accurate registration process is required that plays an
important role in the overall performance of any change
detection or classification algorithm.

According to the above mentioned problems, the global video
motion techniques might be inefficient when dealing with
change detection of remote sensing applications. However, the
global video motion estimation can be viewed as a special
case of the proposed change detection algorithm and thus the
proposed algorithm can be used for such applications as well.

A key issue in analyzing the remotely–sensed images is to
detect changes on the earth’s surface, in order to manage possi-
ble interventions to avoid massive environmental problems [3].
Recently, many researchers have worked on using the remote–
sensing data to help estimating the earthquake damages [4],
[5] or the afterwards reconstruction progresses [6]. Change
detection algorithms usually take two sets of images as the
two ensembles before and after the change and return the
locations where the changes are likely to be happened [1].
Before such stage, a preprocessing step is necessary to produce
two comparable images.

The process of registration aims at performing some geo-
metrical operations on one of the images (or both of them),
to give two compatible images; in which the pixels with
the same coordinates in the two images correspond to the
same physical point [7]. Many researchers have reported the
impact of miss–registration on the change detection results
(e.g., see [8]). The registration operation is an inverse problem,
trying to compensate the real transformation produced by the
imaging conditions. Although different registration methods
are introduced and analyzed [7], [9], there is no optimal
solution found yet and the problem is still an active research
area [10].

The majority of registration methods consist of four essen-
tial steps [9]:

• feature detection,
• feature matching,
• transfer model estimation, and
• image resampling and transformation.

The first step along with the second step aims at finding two



2

sets of corresponding points in the two images. These two sets
are used in the second step to estimate the transform model.
Finally, the fourth step results in the two registered images.

There are two typical methods for finding and matching
feature points. The first one is to search for robust points
in the two images. There are reports of using contours [11],
boundaries [12], water reservoirs [13], [14], buildings [15],
urban areas [16], roads [17], forests [18], costal line [19],
and the forth as the features. Another approach is to use the
information theory tools like mutual information to find the
control points [20]. All of the above mentioned approaches
perform both feature detection and feature matching at the
same time. Due to the massive effect of mismatching of
the control points on the final registration results [8], we
emphasize on the determination procedure of the assigned
control points (even by using the old–style approach of human
intervention) for finding a set of about 20 correct control
points in the two images. The challenge of using the robust
control points is more clear when investigating the post–
earthquake images (see Figure 1). Note that even not finding
the related control points in the second image barriers valuable
information about the level of occurred changes. It must be
emphasized that any automatic control point detection method
can be integrated to the proposed method.

(a)

(b)

Fig. 1. Bingol, Turkey area. (a) Before the earthquake 2002–07–15. (b) After
the earthquake 2003–05–02. ( c©Digital Globe)

The rest of this paper is organized as follows: Section II
describes the proposed method containing a discussion about
the direct linear transform, the estimated affine transform,

the related experimental results, and a proposed method to
estimate the changes occurred on images. Section III contains
the experimental results and discussions, and finally Section IV
concludes the paper.

II. PROPOSED METHOD

Let images I1 and I2 correspond to two different captures of
the same scene in different times. The aim of the registration
stage is to find the transform T : [x, y] → [x?, y?] in the
way that when applying the transform T on the image I2, the
resulting image I ′2 gets aligned on the image I1. We call the
control points in the two images of I1 and I2 as ~xi and ~yi

for i = 1 · · ·n, respectively. They are chosen so that applying
the transform T on ~xi, the result lies on ~yi. In fact, ~xi and
~yi correspond to the same physical location captured as an
image pixel. Here, we assume that the used control points are
properly distributed all over the images.

A. Direct Linear Transform and Affine Transform

Registration has an structural relation to the problem of
camera calibration [21], where one is concerned with estimat-
ing the 3–D coordinates of a point from its corresponding 2–D
coordinates in (at least) two different cameras. A well–known
model for camera projection is the direct linear transform
(DLT) by Abdel–Aziz and Karara [22]. Modelling a camera
with 11 parameters, the DLT is able to compensate perspective
distortions [22].

In the methodology of the DLT, each camera is modeled by
11 parameters and the projection of the point ~pa = [xa, ya, za]
on a camera is defined as [22],

xb =
auxa + buya + cuza + du

axa + bya + cza + 1
(1)

yb =
avxa + bvya + cvza + dv

axa + bya + cza + 1
. (2)

Here, the denominator term (λ = ax + by + cz + 1), applies
the effects of the destination from ~p to the center of the
camera on the projected point coordinates [22]. In the case
of space–born imagery, there are two simplifications to be
applied on the DLT formulation. Firstly, the vertical distance
between the camera and the subject points, z, is assumed to
be constant (because the camera plane is almost parallel to
the subject [9]). Secondly, as the normal vector of the camera
plane and the normal vector of the ”on the earth”’s surface are
almost parallel, the denominator term, λ, gets constant for all
image pixels. Thus, setting,

a1 =
1
λ

au, a2 =
1
λ

bu, tx =
1
λ

(cuz + d), (3)

a3 =
1
λ

av, a4 =
1
λ

bv, ty =
1
λ

(cvz + d), (4)

gives the simplified linear model of,

xb = a1xa + a2ya + tx, (5)

yb = a3xa + a4ya + ty, (6)
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also known as the affine transform [9]. The affine transform
can be written in the matrix notation as,

~pb =
(

a1 a2

a3 a4

)
~pa +

(
tx
ty

)
. (7)

Note that in contrast to the conventional DLT, here the two
different parts of the affine transform (that result in determin-
ing the xb and yb parameters) can be solved independently
resulting in fastening the algorithm efficiently.

The proposed algorithm for estimating the affine transform
from CPs is based on the least square error minimization
approach.

1) Least Square Method: The quality of an affine transform
can be measured by Err =

∑N
i=1 ‖p̃b,i− pb,i‖2. To minimize

the transformation error we have to set ∇Err = 0 as,



∂Err
∂a1

∂Err
∂a2

∂Err
∂a3

∂Err
∂a4

∂Err
∂tx

∂Err
∂ty




= ~0. (8)

We can rewrite Equation (8) as,

a1

∑N
i=1 x2

a,i + a2

∑N
i=1 xa,i.ya,i + tx

∑N
i=1 xa,i =∑N

i=1 xb,i.xa,i,

a1

∑N
i=1 xa,i.ya,i + a2

∑N
i=1 y2

a,i + tx
∑N

i=1 ya,i =∑N
i=1 xb,i.ya,i, and

a1

∑N
i=1 xa,i + a2

∑N
i=1 ya,i + tx.N =

∑N
i=1 xb,i

(9)

a3

∑N
i=1 x2

a,i + a4

∑N
i=1 xa,i.ya,i + ty

∑N
i=1 xa,i =∑N

i=1 yb,i.xa,i,

a3

∑N
i=1 xa,i.ya,i + a4

∑N
i=1 y2

a,i + ty
∑N

i=1 ya,i =∑N
i=1 yb,i.ya,i, and

a3

∑N
i=1 xa,i + a4

∑N
i=1 ya,i + ty.N =

∑N
i=1 yb,i

(10)

Now, using this derivation we just need to solve two linear
equations of order three simultaneously. Note that, the com-
putational complexity order of the proposed algorithm has
reduced to only O(N) instead of conventional approach that
is in order of O(N3).

2) Experimental Results: The performance of the proposed
algorithm is analyzed in terms of its complexity and accuracy.
To implement the algorithm, we have used Matlab 6.5 on a
1.7 GHz, Intel Pentium M computer with 512 MB of RAM.
The accuracy of different algorithms to approximate the affine
transform between two sets of CPs and the related error
caused during the processes are listed in Table I. The error
is calculated using,

Error =
1
N

1√
W 2 + H2

N∑

i=1

∣∣~pb,i −
(
A~pa,i + ~t

)∣∣ (11)

where w and h denote the width and height of the image,
respectively. Table II lists the computational cost when using

different number of CPs. (The common number of CPs de-
pends on the application but an appropriate value is a number
between 20− 30.)

As the registration step plays an important role in the
overall performance of any change detection approach, and
the remotely-sensed images cannot well illustrate the accurate
performance of the proposed registration algorithm, here we
have used a sample image (the logo of our university) to better
illustrate the accurate performance of the proposed registration
method. In Figure 3 we have shown different transforms

Fig. 2. A sample image.

applied on the logo images shown in Figure 2. Figure 4 shows
the logo image with a set of control points overlaid on it.
Figure 5 shows the result of performing our estimated affine
transform on the transferred images shown in Figure 3. Here,
we have used a new visualization method in which we have put
the two registered images in the red and green color channels
of an image and have filled the blue color channel with 255
value. As such, the magenta and cyan pixels clearly show the
mis-registered locations. Note that in this figure the pixels with
cyan colors are resulted from the borders of the transformed
images shown in Figure 3 and not because of any inaccuracy
in the proposed registration method. To further illustrate the
results we have shown some mis-registered images in Figure
??.

TABLE I
PERFORMANCE OF DIFFERENT ALGORITHMS.

Algorithm Run Time Error Stability

Gradient-Descent[23] 2700ms 18.96% No

Geometric[23] 10ms 1.07% Yes

Enhanced Geometric[23] 16ms 0.045% Yes

Fourier Transform[24] 3.8ms 0.027% Yes

Proposed LMS 0.5 ms 0.010% Yes

TABLE II
REQUIRED RUN TIME WHEN USING DIFFERENT NUMBER OF CONTROL

POINTS.

Number of CPs N = 10 N = 20 N = 100 N = 200

Fourier Transform[24] 1.06ms 3.8ms 108.95ms 445ms

Proposed LMS 0.34ms 0.50ms 2.43 ms 4.72ms
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(a) (b)

(c) (d)
Fig. 3. Different transformations of the logo image shown in Figure 2. (a)
Translated. (b) Rotated and translated. (c) Rotated, translated, and balanced
scaled. (d) Rotated, translated, and unbalanced scaled.
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Fig. 4. Control points overlaid on the logo image shown in Figure 2.

B. Proposed Change Detection Method

In this section, we state our proposed unsupervised method
for segmentation and change detection in multi-spectral
remotely–sensed image intervals using the proposed fuzzy
principal component analysis–based clustering method. While
the proposed method is faster than the available approaches
reported in the literature, and depends on no predetermined
parameters, it is also robust against illumination changes. To
the best knowledge of the authors the method introduced
in this paper is the first fuzzy change detection process.
Note that the proposed affine transform estimation and the
proposed change detection methods can also be used in other
applications such as video motion estimation.

The literature of multi-spectral segmentation is not so rich
compared to the case of grayscale segmentation methods.
The first significant method for measuring the color–based
similarity between two images might be the color histogram
intersection approach intoduced by Swain and Ballard [25].

(a) (b)

(c) (d)
Fig. 5. Results of performing the proposed estimated affine transform on
the transformed images shown in Figure 3.

Although, the method is very simple, it gives a relatively
reasonable performance with two main shortcomings: the lack
of spatial information about the images, and dependency to
imaging conditions (like the ambient illumination). Some other
researchers try to use certain color spaces that they believed
to be suitable for segmentation purposes. For example in [26]
the authors use a geometrical measure in the color histogram
to define the similarity between color pairs in the HLS color
space. Although, some good segmentation results in the HLS
color space are reported [27], it is proved in various studies
that none of the standard color spaces are outperforming the
others (e.g. see [28], [29]), while the local principal component
analysis (PCA) is proved to give dominantly better results [29],
[30]. In [31], the researchers process color components in-
dependently, neglecting the vector tendency of them. In [32]
motion estimation is used for segmentation purposes. Here, we
used all m−−D data in our proposed PCA–based clustering
and change detection stages.

Let two images I1 and I2 to belong to the same scene. Then,
each pixel in I1 and I2 is an m–D realization. Also, let image
I1 to be segmented into c classes of φi using the proposed
FPCAC method [33]. Here, Jixy shows the membership of
~I1xy to the i–th class.

Now, perform the FPCA [33] on the fuzzy set,

X̃ = {(~I2xy; Jm
ixy)|1 ≤ x ≤ W, 1 ≤ y ≤ H}, (12)

to find the new clusters φ̃i. In fact, we are using the temporal
redundancy of successive images, assuming that the fuzzy
membership of a pixel to the c classes remains constant if
there is no abrupt change. The reason behind finding the
new clusters in I2 is to compensate probable slight changes
corresponding to the lighting and sensor changes. Now, we
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have the new membership values J̃ixy , which show the level
of membership of ~I2xy to the i–th new class φ̃i.

We propose computing,

δ2
xy =

1
c2

c∑

i=1

Jixy(Jixy − J̃ixy)2, 1 ≤ x ≤ W, 1 ≤ y ≤ H, (13)

as the probability of the point (x, y) being changed from I1

to I2. In fact, δxy measures the net amount of change in
membership of pixels to the classes in the successive images.
Note that while these fuzzy change values are computed, the
clusters are also updated at the same time.

If I1 ≡ I2, then Jixy and J̃ixy will be identical, resulting
in δxy being zero everywhere, as desired. Now, assume that
there is no change between the two images I1 and I2, unless
for the changes in the imaging conditions. Assume that ~xi and
~yi are the spectral vectors of the same pixel in the two images
I1 and I2, respectively. We model the change in imaging
conditions as a linear operation [34]. Assume that ~xi and
~yi relate through a linear transform namely ~xi = A~yi + ~b.
Here, we model A as a non–singular invertible matrix with its
eigenvalues being almost constant. This situation relates to the
cases that the spectral axes rotate (changing the chromaticity
of the illumination), scale (changing the achromaticity of the
illumination), and translate. The model restricts unbalanced
scaling of spectral components which changes the spectral
information non–meaningfully (for details see [34]). Note that
matrix A in the singular value decomposition (SVD) form is
written as A = V DU−1. Where, U and V are orthogonal
matrices and D is a diagonal matrix with the eigenvalues of
A as its elements.

The expectation vectors in the two images I1 and I2

relate as E{~xi} = E{A~yi + ~b} = AE{~yi} + ~b. The fuzzy
covariance matrices of the two images I1 and I2 satisfy C1 =
AE{(~yi−E{~yj})(~yi−E{~yj})T }AT = AC2A

T . Assume that
the eigenvectors of C1 are ~vi corresponding to the eigenvalues
of λi and the eigenvectors of C2 are ~ui corresponding to the
eigenvalues of ρi. Also, assume the eigenvectors of A to be
~wi corresponding to the eigenvalues of εi. Thus, for all i,
C1~vi = λi~vi, C2~ui = ρi~ui, and A~wi = εi ~wi. First assume
that the eigenvectors of A are all exactly equal to the fixed
value of λ (or equivalently ∀i, εi = λ). Thus, A = V DU−1

equals V diag(λ, · · · , λ)U−1 = λV U−1. In this situation,
AT = λUV −1 = λ2A−1 resulting in AT A = AAT =
λ2I . Now, note that C1A~ui = AC2A

T A~ui = λ2AC2~ui =
λ2ρiA~ui. Thus, A~ui is the eigenvector of C2 corresponding
to the eigenvalue of λ2ρi. Note that, ‖A~ui‖ = λ‖~ui‖ = λ.
As the eigenvalues and eigenvectors of a single matrix are
identical, {( 1

λA~u1, λ
2ρ1), · · · , ( 1

λA~um, λ2ρm)} is identical to
{(~v1, λ1), · · · , (~vm, λm)}. As λ2 > 0 we have ~vi = 1

λA~ui

and λi = λ2ρi, for all i. Thus, using the above re–clustering
method, the cluster φ = [~η,~v] in I2 results in the cluster
φ̃ = [A~η +~b,A~v]. Now, we have,

Ψ(~xi, φ̃) = ‖[(A~yi +~b)− (A~η +~b)]− (14)
1
λ2

~vT AT [(A~yi +~b)− (A~η +~b)]A~v‖2 = λ2Ψ(~xi, φ̃),

and J̃ixy = Jixy , resulting in δxy = 0. Thus, the proposed
method will be independent of the lighting and imaging

conditions. Now, assume a more realistic case that εis are
not exactly the same but we have λ − δλ ≤ εi ≤ λ + δλ.
For the cases that δλ

λ is too small the above equations change
to semi–equations and still marginally hold. In this situation
δxy ' 0.

In contrast, physical changes of interest result in different
materials in a single point in different shots. Hence, they
produce absolutely different values of Jixy and J̃ixy , resulting
in non–zero patterns of δxy. In the proposed method, at the
same time both the image sequence segmentation and the
fuzzy change detection are performed.

III. EXPERIMENTAL RESULTS

The experiments are performed using an Intel Centrino 1700
MHz computer with 512 MB of RAM.

Figure 6 shows two multi–band images taken from the city
of Bam by the Quick Bird satellite, before and after the dev-
astating earthquake of December 26, 2003 before registration.
Figure 7 shows the result of our registration. Figure 8 shows
the urban portion of the images. The first images are cropped
with no magnification to focus on details.

Figure 9 shows the resulted fuzzy change maps and a crisp
map can be easily generated after performing a hard threshold.

As mentioned before, the proposed algorithm computes
both the segmentation and the change detection map at the
same time. Note that many applications need to use them at
same time. Figure 10 illustrates the segmentation result before
the earthquake and the segmentation tuning results after the
earthquake.

To show the robustness of the proposed algorithm against
changes in imaging conditions we have evaluated its change
detection performance when running it of two images with
manipulated color changes. In fact, Figure 11 shows a simu-
lated change in imaging conditions with no real changes on
the earth surface. Figures 12 and 13 illustrate the robustness of
the proposed algorithm against such changes. Here, we chose
a linear transform with eigenvalues 0.9, 0.7, 0.9, which are not
completely equal to simulate the more realistic changes. When
running the proposed change detection stage on 472 × 792
downsampled images it elapsed 5.7 seconds.

IV. CONCLUSION

In this paper, a fast and accurate affine transform estimation
method and a new efficient fuzzy change detection method
are proposed for remotely–sensed images. The experimental
results show that the proposed method is fast and robust
against undesired change in imaging conditions. It was shown
that the algorithm can also efficiently used to detect damages
caused by earthquake.
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(a)

(a)
Fig. 8. Urban portion of the images shown in Figure 7.



8

(a)

(b)
Fig. 9. Resulting change maps using the proposed change detection algo-
rithm. (a) Fuzzy change map. (b) Crisp change map (after hard thresholding).

(a)

(b)
Fig. 10. Segmentation results. (a) Before the earthquake. (b)Segmentation
tuning after the earthquake.

Fig. 11. Linearly changed image.



9

(a)

(b)
Fig. 12. Resulting change maps using the proposed change detection method
(Linearly changed image). (a) Fuzzy change map. (b)Crisp change map (after
hard thresholding).

(a)

(b)
Fig. 13. Segmentation results. (a) Original image. (b) Linearly changed
image.


