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Abstract

From the birth of multi–spectral imaging techniques, there has been a tendency to
consider and process this new type of data as a set of parallel gray–scale images,
instead of an ensemble of an n–D realization. However, it has been proved that using
vector–based tools leads to a more appropriate understanding of color images and
thus more efficient algorithms for processing them. Such tools are able to take into
consideration the high correlation of the color components and thus to successfully
carry out energy compaction. In this paper, a novel method is proposed to utilize
the principal component analysis in the neighborhoods of an image in order to
extract the corresponding eigenimages. These eigenimages exhibit high levels of
energy compaction and thus are appropriate for operations such as compression
and watermarking. Subsequently, two such methods are proposed in this paper and
their performance comparison with respect to available approaches is presented.

1 Introduction

Color is one of the most important tools for object discrimination by hu-
man observers, but it is overlooked in the past [1]. Discarding the intrinsic

∗ Corresponding author: Computer Engineering Department, Sharif University of
Technology, Azadi Ave., Tehran, Iran, P.O. Box 11155–9517, Telephone: (+98) 21
6616 4631.

Email addresses: abadpour@math.sharif.edu (Arash Abadpour),
skasaei@sharif.edu (Shohreh Kasaei).

URLs: math.sharif.edu/∼abadpour (Arash Abadpour),
sharif.edu/∼skasaei (Shohreh Kasaei).

Preprint submitted to Image & Vision Computing 21 August 2007



characteristics of color images, as vector geometries [2], some researchers have
considered them as parallel gray–scale components [3–5]. However, it has been
proved that the application of principal component analysis (PCA) leads to
appropriate descriptors for natural color images [6,7]. These descriptors work
in vector domains and take into consideration the statistical dependence of
the components of color images taken from the nature [8].

In this paper, we use a PCA–based distance function and the related homo-
geneity criterion. This criterion will be used in a tree decomposition method
which splits a given image into homogeneous patches. The patches will be fur-
ther analyzed using the PCA to provide energy compaction through a proposed
eigenimage extraction method. These eigenimages are then used in order to
provide color image processing tools such as compression and watermarking.

The rest of this paper is organized as follows. First, Section 2 briefly reviews
the related literature. Then, Section 3 discusses the tools used in this paper
and follows with introducing the proposed method. The paper continues with
Section 4 which contains the experimental results and discussions. Finally,
Section 5 concludes the paper.

2 Literature Review

This section briefly reviews the related literature. First, in Section 2.1, a few
distance functions and their application to color image processing are dis-
cussed. This section also looks at PCA–based color image processing and its
implications. Then, Sections 2.2, 2.3, and 2.4 look at the key issues in color
image decomposition, compression, and watermarking.

2.1 Distance Functions and PCA–Based Color Image Processing

The Euclidean distance is generally assumed to be a proper distance function
in color applications [1,9–14]. Accordingly, it has been applied in different color
spaces (e.g. CIE–Lab [15]). However, research has shown that, although being
very convenient to use, this measure is not a proper color descriptor [16].

A theoretical analysis of highlights in color images was presented in a classical
paper published by Klinker, Shafer, and Kanade in 1988 [6]. In that work, the
light reflected from an arbitrary point of a dielectric object was modeled. In
1990, the same group applied their approach to color image understanding [16].
These developments were left mostly untouched by the research community,
till more than a decade later, in 2003, without paying too much attention to
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the theoretical aspects, Cheng and Hsia used the PCA for color image process-
ing [7]. Then, in 2004, Nikolaev and Nikolayev started the work back from the
theory and proved that PCA is a proper tool for color image processing [17].
The next necessary step was introduced in 1991, when Turk and Pentland pro-
posed their eigenface method [18], in a completely different context. There,
they developed a novel idea which connected the eigenproblems in the color
domain and the spatial domain, together. Although, there is this rich theoret-
ical background for the linear local models of color, it is quite common to see
research procedures which are based on the old color space paradigm, even
published in 2007 (see [19] for example). For a more comprehensive discussion
of this topic refer to [20].

Aside from the theoretical evidence for the superiority of PCA–based color
descriptors, an extensive empirical analysis, given in [21], shows that a certain
PCA–based color distance produces more appropriate results, compared to
the conventional Euclidean and Mahalanobis distances. The latter one is in-
cluded in the analysis because some researchers tend to use weighted Euclidean
distance, which when tuned well converges to the well–known Mahalanobis
distance (e.g. [22]). Here, we will briefly introduce the utilized PCA–based
distance function. The interested reader is referred to [21] for details about
the two others as well as a comprehensive comparison between the three. The
chosen distance function will be used in a homogeneity criterion for the utilized
tree decomposition, which is discussed next.

2.2 Tree Decomposition

Quad–tree decomposition is a well–known method for splitting an image into
homogeneous sub–blocks, resulting in a very coarse, but fast, segmentation [23].
Defining the whole image as a single block, the method is performed accord-
ing to a problem–specific homogeneity criterion. Generalizations of quad–tree
include working on dimension [24] and shape [25] of the blocks. In conven-
tional quad–tree decomposition, a non–homogeneous block is split into four
sub–blocks. The one–split–to–four rule has been optimized by using a novel
one–split–to–two rule, resulting in a method called bi–tree decomposition [26].

2.3 Color Image Compression

The early approach to color image compression is based on decorrelating the
color components using a linear or nonlinear invertible coordinate transforma-
tion (e.g., Y CbCr [27], Y IQ [28] and Y UV [29]). Then, one of the standard
gray–scale compression methods (such as differential pulse code modulation
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(DPCM) [30] or transform coding [31]) will be applied on each component,
separately (see also [32]).

This approach is inefficient, because none of the available color spaces is able
to completely decorrelate the color components in a real image [6]. In [33],
using the PCA approach in the neighboring pixels, the author discusses the
idea of separating the spatial and the spectral compression stages. As the
paper proves, the maximum theoretical compression ratio for an ideal spectral
compression method is 1 : 3. The main shortcoming of the method introduced
in [33] is neglecting the fact that in non–homogeneous patches, the PCA does
not perform energy compaction [9]. In [9], the author combines the spatial
and spectral information to reach a higher compression ratio. Although, that
method is based on expensive computation, the peak signal to noise ratio
(PSNR) results are desperate.

2.4 Color Image Watermarking

Ease procedure of copy and transfer of digital files has made the urge for effec-
tive watermarking schemes to protect the fidelity of the media [34]. On top of
the general–purpose data watermarking approaches (e.g. [35,36]), there is an
extensive literature for watermarking images. The main concern in this field
is to locate spots in an image, in different domains, where data can be added
without being perceptible by human observers. The early approaches taken
in this regard use the redundancy of the natural images in the spatial do-
main [34,37]. With the introduction of color imaging, some of these grayscale
watermarking techniques have been exported to color images. For example,
in [36], the authors embed the watermark in the blue component. In another
work [38], the CIE − Lab coordinates are quantized and then the watermark
is copied into the least important bits. As mentioned by the authors in [39],
most available color image watermarking approaches work on the luminance
or independent color components. This ignores the correlation between color
components, and the regarding opportunity for effective embedding of infor-
mation in color images.

3 Proposed Method

3.1 Distance Functions and Homogeneity Criteria

In [40], the authors proposed to use the error made by neglecting the two
least important principal components (the second and the third) as a distance
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function, called the linear partial reconstruction error (LPRE)

τr (�c) =
∥∥∥�vTr (�c − �ηr) �vr − (�c − �ηr)

∥∥∥ . (1)

Here, �vr denotes the direction of the first principal component of Cr, the
covariance matrix of the color vectors of the patch r

Cr = E�c∈r

{
(�xi − �η) (�xi − �η)T

}
. (2)

Also, ‖·‖ is the Euclidean norm and �xT denotes transposition. Furthermore, �ηr
is the expectation vector of r, �ηr = E�c∈r {�c}. With these definitions, τr (�c) is
the distance from the arbitrary color vector �c to the given set r. Comparison
of this measure with other conventional ones can be found in [21].

Having defined a proper distance function, a related homogeneity criterion can
be derived by defining

τr = E�c∈r {τr (�c)} . (3)

This way, the LPRE–based homogeneity criterion is defined. As mentioned in
Section 2.1, the empirical analysis carried out in [21] shows that, compared
to the Euclidean and Mahalanobis distances, LPRE performs the three below
mentioned primitive tasks more efficiently. First, it yields a more appropriate
classification of pixels into relevant and irrelevant ones, in regards to a given
homogeneous patch. Furthermore, when asked to decide whether or not a patch
is homogeneous, LPRE’s results comply better with the human perception.
Finally, in the existence of outliers, LPRE shows more robustness than both
the Euclidean and the Mahalanobis distances [21] (also see [41]).

3.2 Bi–Tree Decomposition

As discussed in Section 2.2, having chosen a proper homogeneity criterion, an
image can be decomposed into homogeneous regions (here, based on τr). Start-
ing with the entire image, the tree is produced by splitting non–homogeneous
regions (the ones for which τr > ε1, where ε1 ∈ [1, 10] is a threshold). In a
W ×H image, the depth of a w × h block r is defined as

�r = max
{
log2

W

w
, log2

H

h

}
(4)

and no block is permitted to reach the depth more than a preselected marginal
tree depth � ∈ [1, 5].
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Here, we use a novel tree decomposition method called bi–tree [26]. In bi–tree,
if the block r is not homogeneous enough, rather than the deterministic choice
of the sub–blocks in quad–tree, r is divided either horizontally or vertically (see
Figure 1). This is accomplished in the way that the total non–homogeneity of
the output gets the least possible. Extensive empirical comparison of bi–tree
with quad–tree, given in [26], shows that bi–tree produces fewer blocks, with a
more uniform distribution of block sizes. On the contrary, quad–tree splits the
image more and produces a more scattered pattern of block sizes. The total
homogeneity of the resulting blocks are almost the same in both methods.
The achievements of bi–tree have the cost of demanding about four times
more computational resources than the quad–tree. As the proposed method
works better when blocks have similar sizes, we use bi–tree in this paper.

3.3 Basis Vector Polarization

There is a manipulated form of the well–known Euler angles that relates any
right–rotating orthonormal matrix with three angles, in a one–to–one revert-
ible transformation [42]. As such, for the matrix V, with its i–th column
denoted as �vi, we write V ∼ (θ, φ, ψ) when




θ = ∠
(
�vxy1 , [1, 0]T

)
φ = ∠

(
(Rxy

θ �v1)
xz , [1, 0]T

)
ψ = ∠

((
Rxz
φ Rxy

θ �v2

)yz
, [1, 0]T

) (5)

Here, ∠(�v, �u) is the angle between the two vectors �v, �u ∈ R2 and �vp denotes
the project of the vector v on the plane p. Also, Rp

α is the 3 × 3 matrix of α
radians counter–clock–wise rotation in the p plane




Rxy
θ =


 cos θ − sin θ 0

sin θ cos θ 0
0 0 1




Rxz
φ =


 cosφ 0 − sinφ

0 1 0
sin φ 0 cosφ




Ryz
ψ =


 0 cosψ − sinψ

1 0 0
0 sinψ cosψ


.

(6)

It can be proved that to produce V out of the triple (θ, φ, ψ) one may use [43]
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V = Rxy
−θR

xz
−φR

yz
−ψ. (7)

Note that (Rp
α)

−1 = Rp
−α. While equation (5) computes the three angles θ, φ

and ψ out of V, equation (7) reconstructs V from θ, φ and ψ. These meth-
ods are called polarization and depolarization of a right–rotating orthonormal
matrix, respectively [42].

3.4 Block–Wise Interpolation

Consider a partition of the H × W square as a set of rectangular regions
{ri |i = 1, · · · , n}, while the values of {λi|i = 1, · · · , n} are given, satisfying

f(�c) � λi, ∀i, ∀�c ∈ ri (8)

for an unknown function f : R
2 → R. The problem is to properly approxi-

mate f as f̃ . We address this problem as block–wise interpolation of the set
{(ri;λi) |i = 1, · · · , n}.

Note that, for a conventional rectangular grid as the partition, the problem
reduces to an ordinary 2–D interpolation task. Here, we use a reformulated
version of the well–known lowpass Butterworth filter, as the interpolation
kernel, to carry out the interpolation in the more general case.




Bτ,N(x) =
(
1 +

(
x
τ

)2N
)− 1
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N = rnd

(
log a

b

(
β
√

1 − α2

α
√

1 − β2

))

τ = a
2N

√
α2

1 − α2

(9)

Here, a, b, α, and β are given and the function Bτ,N(·) satisfies Bτ,N(a) = α and

Bτ,N(b) = β. The 2–D version of this function can be defined as, Bw,h
τ,N(x, y) =

Bwτ,N(x)Bhτ,N(y), where w and h control the spread of the function in the x
and y directions, respectively. Figure 2 shows the typical shape of the function
Bw,h
τ,N(x, y) with a = 0.9, α = 0.7, b = 1, β = 0.5 and w = h = 16.

Assuming that the region ri is centered at (xi, yi), while its height and width
are wi and hi, respectively, we propose the function f̃ to be defined as
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f̃(x, y) =

N∑
i=1

λiB
wi
2
,
hi
2

τ,N (x− xi, y − yi)

N∑
i=1

B
wi
2
,
hi
2

τ,N (x− xi, y − yi)

. (10)

Note that f̃ is a smooth version of the staircase function f .

As the generalization of the block–wise interpolation problem, assume that the
set of regions and the corresponding λijs are given as {(ri;λi1, · · · , λim) |i = 1, · · · , n},
satisfying fj (�c) � λij , ∀i, j,�c ∈ ri, for a set of m unknown functions fj : R

2 →
R. To solve this problem, in a way similar to (10), we calculate

f̃j(x, y) =

n∑
i=1

λijB
wi
2
,
hi
2

τ,N (x− xi, y − yi)

n∑
i=1

B
wi
2
,
hi
2

τ,N (x− xi, y − yi)

. (11)

Here, because the set of base regions for all f̃js are the same, the total per-
formance is increased by computing the kernel just once, for each value of i.
Then, the problem reduces to m times computation of a weighted average.

When working in the polar coordinates, ordinary algebraic operations on the
variables lead to spurious results, because of the 2π discontinuity. To over-
come this problem, rather than directly solving {(ri; θi) |i = 1, · · · , n}, we solve
the problem {(ri; cos θi, sin θi) |i = 1, · · · , n} and then find θi using ordinary
trigonometric methods.

3.5 Eigenimage Theory

Consider the PCA matrix, Vr and the expectation vector, �ηr, corresponding
to the homogeneous set r. For the arbitrary color vector �c, which belongs to
r, the PCA coordinates are calculated as, �c′ = V−1

r (�c − �ηr) [44]. Assume that
there exists a method for finding an appropriate color set r�c for each color
vector �c. Here, r�c describes the color content of �c, in the sense that

�c′ = V−1
r�c

(�c− �ηr�c
) (12)

satisfies

σc′1 	 σc′2 	 σc′3 (13)
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where, �c′ = [c′1, c
′
2, c

′
3]
T . We call the c′1, c

′
2 and c′3 components as the pc1,

pc2 and pc3, principal components, respectively. The original image can be
perfectly reconstructed using these three components, except for numerical
errors, as

�c � �c3 = Vr�c
�c′ + �ηr�c

. (14)

It is proved in [6], theoretically, and in [40], empirically, that for homogeneous
swatches, neglecting pc3 (or even both pc2 and pc3), gives a good approx-
imation of the original image. These are called partial reconstructions. Note
that the perfect reconstruction scheme of (14) does not rely on (13), while the
properness of the partial reconstructions defined as

�c2 = Vr�c


 c

′
1

c′2
0


+ �ηr�c

(15)

and

�c1 = Vr�c


 c

′
1

0
0


+ �ηr�c

(16)

do rely on (13).

Now, the goal is to devise an efficient method for calculating, and storing, Vr�c

and �ηr�c
for all the pixels in an image. In the following, a method for doing this

task is proposed.

After feeding an image I into the bi–tree method, The output is the matrix Υ
which contains the coordinates of ri along with the expectation matrix �ηi and
the polarized version of the PCA matrix (θi, φi, ψi). Now, consider solving the
problem {(ri; ξi) |i = 1, · · · , n} using the block–wise interpolation, where ξi is
the row vector containing ηi1, ηi2, ηi3, θi, φi and ψi. The solution will be the
functions η̃1, η̃2, η̃3, θ̃, φ̃, ψ̃ : R

2 → R. Now, we compute the functions �̃η : R
2 →

R
3 (expectation map, Emap) and Ṽ : R

2 → R
9 (rotation map, Rmap), as the

expectation vector and the PCA matrix in each pixel, respectively. This leads
to the computation of the three eigenimages pc1, pc2 and pc3 (using (12)).

It can be shown that [45]

σ2
pc1

+ σ2
pc2

+ σ2
pc3

= σ2
r + σ2

g + σ2
b. (17)
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Here, r, g and b are the original RGB components of I. Thus, we define

κi =
σ2

pc1

σ2
pc1

+ σ2
pc2

+ σ2
pc3

(18)

as the energy ratio of the i–th eigenimage. Now, if the PCA matrix is chosen
properly

κ1 	 κ2 	 κ3. (19)

In the next two sections, we will show how the eigenimage can be used for
effective compression and watermarking of color images.

3.6 Color Image Compression

Consider the image I and its corresponding eigenimages pc1, pc2 and pc3.
Due to the energy compaction condition, given in (19), this scheme can lead
to a spectral compression of an image. As such, reconstructing the image
using just one or two eigenimage(s) gives the compression ratios of 3

2
: 1 and

3 : 1, respectively. To add the spatial compression to this scheme, we use the
PU–PLVQ gray–scale image compression technique [46] for each eigenimage,
independently, with different compression ratios. This leads to the color image
compression method proposed in Figure 3.

As Figure 3–a shows, the transmitted information consists of the compressed
versions of pc1, pc2 and pc3, along with Υ, α, a, β and b. Assume that the
compression is to be applied on an H ×W image, decomposed into n blocks
by the bi–tree method. The total amount of information to be sent equals 10n
bytes for storing xi1, xi2, yi1, yi2, ηi1, ηi2, ηi3, θi, φi and ψi plus WH(λ−1

1 +
λ−1

2 + λ−1
3 ) bytes for storing pc1, pc2 and pc3 eigenimages compressed with

compression ratios of λ1, λ2 and λ3, respectively (where λ1 > λ2 > λ3). Thus,
the total compression ratio equals

λ � 3

λ−1
1 + λ−1

2 + λ−1
3 + 10n

WH

. (20)

Picking the values of λ2 = λ1 and λ3 = ∞ leads to λ � 1.5λ1. Note that us-
ing a pure spatial compression approach, all three color components must be
compressed with almost the same compression ratios, resulting in a total com-
pression ratio of λ1. Thus, in the worst case, the proposed method multiples
the compression ratio by at least 1.5.
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As shown in Figure 3–b, in the decompression process, first, the Emap and the
Rmap are computed. Using this information, along with the decoded versions
of pc1, pc2 and pc3, the original image is then reconstructed.

3.7 Color Image Watermarking

Consider the image I with the three corresponding eigenimages of pc1, pc2

and pc3. Although, there is no orthogonality constraint in the eigenimage
theory, the eigenimage approach can be adapted for watermarking purposes.
Assume that the gray–scale watermark image W is to be embedded into I.
Also, assume that I and W are of the same size (H ×W ). First, the dynamic
range of W is fitted into that of pc3, as

W̃ =
σpc3

σW
(W − ηW) . (21)

Now, replacing pc3 with the scaled version of the watermark signal, W̃, the
watermarked image, I′, is constructed.

The process of extracting the watermark is through computation of the eigen-
images corresponding to I′, which we call pc′1, pc′2 and pc′3. Now, pc′3, when
normalized, contains the reconstructed watermark signal

W′ = 255
pc′3 − (ηpc′3 − σpc′3)

2σpc′3
. (22)

4 Experimental Results

The proposed algorithms are developed in MATLAB 6.5, on an 1100 MHz
Pentium III personal computer with 256MB of RAM. For a typical 512 ×
512 image it takes 8.3 seconds to extract the eigenimages. Then, another 4.6
seconds are needed to reconstruct the image. Adding the less than one second
needed to do the spatial compression, the total operation takes slightly less
than 16 seconds for a typical image. It takes a similar amount of time to embed
a watermark in a 512×512 image and about 9 seconds to extract it. Note that
these values are measured using MATLAB code and can be reduced drastically
if the code is implemented using a higher level programming language.

A database of color images which includes the standard images of Lena, Man-
drill, Peppers, and Couple as well as some professional color photographs [47],
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a total of 140 images, is used in this research. All images are of the size
512 × 512, in RGB color space, and are compressed using standard JPEG
with qualities above 95. Prior to the operation, all the images are converted
to the standard BMP format.

4.1 Block–Wise Interpolation

To illustrate the results of the proposed block–wise Interpolation method,
a sample problem is given in Figure 4–a, with the associated outcome in
Figure 4–b, at the signal to noise ratio (SNR) of more than 22dB.

4.2 Eigenimages

Figure 5 shows the process of extracting the eigenimages corresponding to
the image shown in Figure 5–a, using the proposed method. First, using the
bi–tree method with the parameters ε1 = 5 and � = 5, the image is split
into 91 blocks (see Figure 5–b). These blocks are then used to generate the
EMap and the RMap, as shown in Figures 5–c and (d), respectively. Subse-
quently, the eigenimages, as shown in Figures 5–e, f, and g, are extracted.
Notice that the dynamic ranges of all eigenimages are exaggerated to give a
better visualization. The stochastic distributions of the eigenimages are inves-
tigated in Figure 5–h. These histograms show the compaction of the energy
as discussed next. Using numerical measures, the standard deviations of the
eigenimages are computed as σpc1

= 52, σpc2
= 12, and σpc3

= 6. This results
in κ1 = 94%, κ2 = 5%, and κ3 = 1%, a clear compaction of the energy in the
first eigenimage.

Figure 5–i shows the result of reconstructing the image shown in Figure 5–a
using all three eigenimages. Similarly, Figures 5–j and k show the results of
ignoring pc3 and both pc3 and pc2, respectively. The resulting PSNR values
are 60dB, 38dB, and 31dB, respectively. Note that PSNR of 60dB (instead
of infinity), for reconstructing the image using all eigenimages, is caused by
numerical errors, while the two other PSNR values (38dB, 31dB) show some
loss of information. Note that, in the literature, PSNR values of above 38dB
are considered visually satisfactory even for professionals [48].

Figures 6–a, b, and c show the values of κ1, κ2 and κ3 for the image shown
in Figure 5–a, at different values of ε1 and �. Note that except for the trivial
cases of � ≤ 2 and ε1 > 9, which are never used in practice, more than 90%
of the image energy is stored in pc1, while pc2 and pc3 hold about 9% and
1% of the energy, respectively. Having in mind that in the original image
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κr = 38%, κg = 32% and κb = 30%, the energy compaction of the eigenimages
are considerable.

Figure 7 shows the PSNR values obtained by reconstructing the image shown
in Figure 5–a using all three eigenimages (Figure 7–a), two eigenimages (Fig-
ure 7–b), and only one eigenimage (Figure 7–c), for different values of ε1 and
�. Note that, for values of ε1 ≤ 8 and � ≥ 3, reconstructing the image using all
eigenimages gives the high PSNR value of about 60dB, while neglecting one
and two eigenimages results in PSNR≥ 35dB and PSNR≥ 28dB, respectively.

4.3 Color Image Compression

Figure 8 shows the results of the proposed compression method, with the asso-
ciated numerical values mentioned in Table 1. These results are acquired using
ε1 = 5 and � = 5. To compare the compressed images with the original ones,
the exaggerated differences are carried in Figure 9. Note the high compression
ratio of about 70 : 1 in all cases, while the PSNR is mostly above 25dB.

Among other region–based coding approaches, the method by Carveic et al.
is one of the best [9]. In that work, the authors mixed the color and texture
information into a single vector and then performed the coding using a mas-
sively computationally–expensive algorithm. However, the final results show
PSNR values of about 40dB for compression ratios of about 20 : 1. In [33],
the researchers separate the compression in the two disjoint domains of spec-
tral and spatial redundancy, by using a PCA neural network. They reach the
compression ratio of 3.7 : 1 with PSNR of around 25dB, while almost all test
samples are homogeneous. In [49], the method gives the compression ratio of
about 14.5 : 1 but with the same range of PSNR as ours. As a more recent ap-
proach, we compare the PSNR of 31.93dB reported in [19] for Lena at 1.17bpp
with the results of the proposed method in which PSNR of 33.6dB is achieved
at 0.33bpp.

Table 1 also compares the proposed algorithm with JPEG98 and JPEG2000.
To do this comparison, each sample image is compressed using each one of
these algorithms with the exact compression ratio acquired from the pro-
posed method. As expected, Table 1 shows that JPEG2000 is always giving
a better result compared to JPEG98. Comparing the proposed method with
JPEG2000, we understand that, except for the case of Figure 8–f, the pro-
posed method is giving a higher PSNR than both others. Numerically, the
proposed method is 14% and 7% better than JPEG98 and JPEG2000, respec-
tively, in terms of PSNR. This means more than 3.6dB and 1.9dB increase in
the quality when comparing the results of the proposed method with JPEG98
and JPEG2000, respectively.
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4.4 Color Image Watermarking

To demonstrate the utilization of the proposed method in embeding a water-
mark in an image, we use the example shown in Figure 10. Here, Figure 10–b
shows the results of embedding the watermark data shown in Figure 10–a into
the image shown in Figure 5–a. The resulting PSNR of this operation is 35dB.
Figure 10–c shows the exaggerated difference between the original image and
the watermarked image, and Figure 10–d shows the extracted watermark. In-
vestigating Figure 10–c shows where the proposed method hides the data; at
each pixel, the direction of the third principal component shows the direction
in which data can be put such that it does not affect the visual perception of
the image.

To test the robustness of the proposed watermarking method against invasive
attacks, the watermark shown in Figure 11 is embedded in the sample image
shown in Figure 5–a. Then, the watermarked image is attacked, using Adobe
Photoshop 6.0, as stated in Table 2. Figure 12 shows some of the attacked wa-
termarked images and Figure 13 show the corresponding extracted watermark
data. Investigating Figure 13 shows that the proposed watermarking method
is robust against linear and nonlinear geometrical transformations, including
rotation, scaling, trimming, and other geometrical distortions. Also, it is ro-
bust against occlusion, artistic effects, noise, enhancement operations such as
brightening and increasing contrast (even when performed locally), and also
lossy compression for ratios up to 15 : 1.

Table 3 compares the proposed watermarking method with some of the ap-
proaches available in the literature. This table lists the watermark capacity
of each method when embedding to a 512 × 512 color image along with the
domain in which the data is embedded. Also, the attack resistance of different
approaches is compared here.

It is observed in different experiments that the standard deviation of pc3

in a typical image is more than 4. Thus, using the proposed watermarking
method on a 512 × 512 color image, at least a same–sized 2bpp image can
be used as the watermark signal. This makes the watermark capacity of the
proposed method equal to 64KB. This is four times more than the highest ca-
pacity of the best available approach [50]. It is worth to mention that only the
approaches discussed in [38,51] use color vectors and that only [38] exhibits
levels of resistance to linear point operations such as brightening and contrast
enhancement. It must be emphasized that the resistance of that method is lim-
ited to global operations, while the method proposed in this paper is resistant
even to local linear point operations (see Figures 12–f and g). Unfortunately,
in the literature, minor attention is paid to non–linear geometrical operations,
such as elastic and perspective transformation, and image editing processes,
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such as adding text, artistic effects, occlusion and the forth, whilst the copy-
righted images can be used in books, posters, and websites where they appear
in manipulated forms.

5 Conclusion

In this paper, a PCA–based distance function and the corresponding homo-
geneity criterion are utilized within a tree decomposition method. The result-
ing decomposition is then used in order to extract the eigenimages associated
with a given image. The proposed eigenimage extraction method is proved
to be highly efficient in compacting the image energy as well as in providing
proper partial reconstructions of color images. The eigenimages are then used
in a color image compression method. Furthermore, the fact that manipulat-
ing the third eigenimage has minor effect on the quality of an image is used
in a novel watermarking method. Both methods are compared with the avail-
able literature. Comparisons show that the proposed compression method is
superior to the available approaches (in average 1.9dB more than JPEG2000
in PSNR for the samples used in this paper). The analysis of the proposed
watermarking method shows that it is resistant to local alterations as well as
to the manipulations performed in publications and websites, such as adding
text and non–linear geometrical distortions. No other watermarking approach
in the literature is found to claim similar resistance.
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Fig. 1. Bi–tree decomposition method.
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Fig. 2. Typical shape of the proposed interpolation kernel Bw,h
τ,N(x, y).

Table 1
Numerical information corresponding to the results shown in Figure 8. [n: block
count. λ: Compression Ratio, bpp: bit per pixel.]

Sample

Proposed Method
JPEG JPEG2000

n
pc1 pc2 pc3 Total

λ bpp λ bpp λ bpp λ bpp PSNR (dB) PSNR (dB) PSNR (dB)

8–a 334 42.6 : 1 0.19 58.8 : 1 0.14 ∞ 0 71.1 : 1 0.34 28.4 26.8 27.1

8–b 60 43.1 : 1 0.19 56.2 : 1 0.14 ∞ 0 72.6 : 1 0.33 33.6 28.9 30.7

8–c 161 39.8 : 1 0.20 55.1 : 1 0.15 ∞ 0 68.0 : 1 0.35 30.4 27.7 29.5

8–d 311 44.4 : 1 0.18 58.0 : 1 0.14 ∞ 0 72.5 : 1 0.33 24.5 19.8 21.7

8–e 203 41.3 : 1 0.19 56.9 : 1 0.14 ∞ 0 70.1 : 1 0.34 33.3 30.5 32.4

8–f 32 45.5 : 1 0.18 62.8 : 1 0.13 ∞ 0 78.8 : 1 0.30 26.1 38.4 42.4

8–g 91 41.3 : 1 0.19 57.7 : 1 0.14 ∞ 0 71.4 : 1 0.34 35.4 30.2 32.7
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Fig. 3. Flowchart of the proposed color image compression method. (a) Compression.
(b) Decompression.
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Fig. 4. Proposed block–wise interpolation. (a) Sample problem. (b) Solution pro-
vided by the proposed block–wise interpolation (SNR> 22dB).
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Fig. 5. Process of extracting eigenimages from an arbitrary image. (a) Original image
adopted from [47]. (b) Outcome of bi–tree decomposition method. (c) Emap. (d)
Rmap. (e) pc1. (f) pc2. (g) pc3. (h) Histograms of eigenimages. (i) Reconstruction
using all eigenimages (PSNR=60dB). (j) Ignoring one eigenimage (PSNR=38dB).
(k) Ignoring two eigenimages (PSNR=31dB).
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Fig. 6. Distribution of energy between three eigenimages, for different values of ε1

and �. (a)κ1. (b)κ2. (c)κ3.
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Fig. 7. PSNR values corresponding to partially–reconstructed images, for different
values of ε1 and �. (a) Using three eigenimages. (b) Using two eigenimages. (c)
Using only one eigenimage.
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(a) (b) (c) (d)

(e) (f) (g)

Fig. 8. Results of proposed compression method. For details about compression ratio
and PSNR see Table 1.

(a) (b) (c) (d)

(e) (f) (g)

Fig. 9. Exaggerated error of the proposed compression method.
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(a) (b)

(c) (d)

Fig. 10. Results of the proposed watermarking method performed on the image
shown in Figure 5–a. (a) Watermark data. (b) Watermarked image at PSNR=35dB.
(c) Exaggerated difference between the original and watermarked images. (d) Ex-
tracted watermark data.

Fig. 11. Sample watermark.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Fig. 12. Some attacked watermarked images, corresponding items in Table 2 are:
(a):1, (b):2, (c):3, (d):5, (e):9, (f):11, (g):12, (h):13, (i):14, (j):23, (k):28, and (l):29

Table 2
Some of the attacks performed on watermarked images to analyze the robustness
of the proposed watermarking method.

index Attack

0 –

1 Enhancement

2 Scaling and trimming

3 Rotation, scaling and trimming

4–7 Nonlinear Geomtrical

8 Gaussian Lowpass

9,10 Scratch

11,12 Local brightening/darkening

13 Text

14 Motion Blur

15 Radial Blur

16–22 Geometrical Distortion

23 Uniform Color Noise

24 Gaussian Color Noise

25 Uniform Gray Noise

26 Gaussian Gray Noise

27 Median

28 Artistic Lens Flare

29 Lossy Compression

28



(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Fig. 13. Extracted watermarks from attacked images shown in Figure 12.

Table 3
Comparison of different watermarking approaches with the proposed method, all
used in a 512 × 512 image. –: Not Resistant. ∼: Partially Resistant.

√
: Com-

pletely Resistant. [Abbreviations: G: Grayscale, SCC: Single Color Component,
CV: Color Vector, LG: Linear Geometrical Transformation, NLG: Nonlinear Ge-
ometrical Transformation, LPO: Linear Point Operations, NLPO:Nonlinear Point
Operations, SO: Spatial Domain Operations, EO: Editing Operations, CMP: JPEG
Compression].

Method [52] [53] [54] [38] [36] [50] [55] [56] [57] [58] [51] Proposed

Capacity 4KB 8KB 8KB 2KB 1KB 16KB 8B 0.5KB 60B 64B 2KB 64KB

Domain G G G CV SCC SCC SCC G G G CV CV

A
t
t
a
c
k

LG ∼ √ ∼ ∼ ∼ √
–

√ √ ∼ ∼ √

NLG – – – – – – – – – – –
√

LPO – – – ∼ – – – – – – –
√

NLPO – ∼ ∼ ∼ ∼ ∼ – ∼ – – ∼ √

SO – ∼ ∼ ∼ ∼ ∼ – ∼ ∼ ∼ ∼ √

EO – – – – – – – – – – –
√

CMP
√ √ √ √ √ √ ∼ √ √ √ √ √
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